

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

08 January 2018 File No. 130771-002

DLJ Real Estate Capital Partners c/o BetaWest Ltd. 1050 17th Street, Suite 350 Denver, Colorado 80265

Attention: John Fenton

Subject: Site Assessment Report

Boynton Yards (Parcels B-2, B-3 and Lot 5)

Somerville, Massachusetts

Ladies and Gentlemen:

This letter transmits the results of recent subsurface explorations and analytical testing conducted to characterize site conditions relative to environmental soil and groundwater quality within the limits of the proposed Boynton Yards development (the "Site") located in Somerville, Massachusetts, as shown on Figure 1. The purpose of the information collected and summarized herein is to provide environmental information in support of permitting, management of contaminated soil and groundwater during planned construction and assessment of regulatory obligations under the Massachusetts Contingency Plan (MCP).

BOYNTON YARDS DEVELOPMENT

The Site is located in Boynton Yards and is bound by Windsor Street, Windsor Place, Earle Street, Harding Street and South Street. The 3.44 acres are currently home to surface parking, a construction equipment storage lot, and two one- and two-story concrete block commercial buildings. DLJ Real Estate Capital Partners (DLJ) intends to develop the Site into a dynamic, mixed-use, transit oriented project. The Site is shown on Figure 2.

Upon full build out, DLJ's development could provide up to 950,000 gross square feet (gsf) of commercial and residential space. The project's initial phase will consist of two commercial buildings. Building 1, to be located on Lot 5, will consist of a ten-story office and retail building with a basement. Building 2, to be located on Parcel B-3, will consist of an eight story lab building with supporting retail and four levels of underground parking. Design for structures on Parcel B-2 is under development.

CURRENT SITE CONDITIONS

The parcels are located in a commercial area of Somerville. Conditions at each parcel are described below:

- Parcel B-2 is an approximately 2-acre parcel located on the western portion of the Site. It is currently occupied by active parking lots and two commercial buildings, with a City of Somerville utility easement traversing the northern portion of the parking lot. The parcel is predominately paved, with landscaped areas at the perimeters, and ground surface elevations ranging from approximately elevation (El.) 8 to El. 10 (NAVD 88).
- **Parcel B-3** is an approximately 1-acre unimproved parcel currently used as a storage yard for Lanco Scaffolding Company. The property is unpaved, with ground surface elevations ranging from approximately El. 9 to El. 12.
- **Lot 5** is an approximately ½ acre parcel occupied by an active parking lot. The lot is predominately paved, with landscaped slopes on the eastern and western edges, sloping from the parking lot elevation of approximately El. 12 down to street level (El 9).

SITE HISTORY

According to a ASTM Phase I Environmental Site Assessment Report prepared by Green Environmental dated June 2015 (attached as Appendix D), the Site was historically occupied by marshlands associated with Millers River, which were filled in the late 1800s. From the late 1800s to the 1980s, the Site and surrounding area was used primarily for industrial purposes and railyards.

Parcel B-2 was occupied by slaughterhouses and meatpacking facilities from its initial development until approximately 1997, when the buildings were demolished. In 1997, the two current buildings were constructed, and have since been used for commercial purposes.

Parcel B-3 was filled with material from Prospect Hill in 1872, and was occupied by residential buildings until 1933. From 1933 to 1980, a sausage factory operated on the parcel. In 1980, the factory was demolished but the foundation left in place. From 1980 until the late 1900s, the parcel was subject to illegal dumping. In 1992, the former building foundation was removed and efforts to control illegal dumping were enacted. The parcel remained vacant until the early 2000s, and has since been used for storage.

Lot 5 was developed in approximately 1920 as part of a ladder manufacturing company, which occupied the property until approximately 1960. The property was then occupied by an automotive repair and spray painting facility through the 1960s and early 1970s, and then operated as a spray painting and sandblasting facility from 1978 to 1992. In 1992, the City of Somerville acquired the property through eminent domain. In 1992/1993 the property was vacated, and the buildings associated with the sandblasting operations were demolished. Site grades were raised in 1994, when material excavated from within South Street during utility improvements was permanently placed on Lot 5. In 2001, the property was redeveloped as a parking lot.

MCP REGULATORY BACKGROUND

There are three Massachusetts Department of Environmental Protection (MassDEP) Release Tracking Numbers (RTNs) currently associated with the Site, as described below. Available 21E reports, from which this section was developed, are included in the Green Environmental ASTM Phase I Assessment Report, provided in Appendix D. A summary of environmental conditions at Lot 5, prepared by Green Environmental and dated 13 May 2015, is also included in Appendix D.

RTN 3-10897 (Lot 5)

Subsurface investigations were initially performed at Lot 5 in 1992 following seizure by the City of Somerville and the cessation of sandblasting at the property. At the time of initial investigations, piles of "black beauty", a sandblasting media, were reportedly located on the ground surface at thicknesses up to 2 feet. Elevated lead concentrations were detected in surface and subsurface samples, and all samples analyzed contained toxicity characteristic leaching procedure (TCLP) lead at concentrations greater than 5 mg/L, indicating that soil was considered characteristically hazardous. Additional investigations were performed in 1993. Elevated lead concentrations were again detected, with the highest concentration (up to 21,000 mg/kg) in samples from a boring at the center of the property. Two of the eighteen samples analyzed, collocated with the highest total lead results, exhibited TCLP lead results greater than 5 mg/L. In the fall of 1993, the Site buildings were demolished, and sandblasting media located on the ground surface was removed. In 1994, the Site was reported to MassDEP and Release Tracking Number (RTN) 3-10897 was assigned. Also in 1994, as a Utility Related Abatement Measure (URAM), excavation associated with street and utility relocation was performed along the southern edge of the property, and soil excavated from the southern portion of the site and adjacent South street was relocated to the central portion of the Site, raising much of the Site grade by approximately three feet. The soil placed as part of URAM activities was sampled and shown to contain elevated concentrations of lead, but not to be characteristically hazardous. A Phase II Comprehensive Site Assessment was completed in July 1996, and in 2001 a paved parking lot was constructed on the property, an Activity and Use Limitation (AUL) was recorded, and the Site was closed with a Class A-3 Response Action Outcome (RAO).

The AUL remains in place on Lot 5 and prohibits residential use, use as a school, nursery, daycare or recreation area, prohibits the cultivation of crops for human consumption, prohibits the relocation of soil beneath the pavement without an LSP Opinion, and requires the maintenance of pavement.

RTN 3-00026 (Parcel B-3)

RTN 3-00026 is associated with the historic Boynton Yards area, and includes Parcel B-3, as well as the former MBTA yard to the north. During an initial Site assessment in 1985, petroleum contamination (xylenes, naphthalene and polycyclic aromatic hydrocarbons (PAHs)) was identified in groundwater and further investigation was recommended. RTN 3-00026 was assigned to the Site in July 1986. In 1988, a Phase I assessment was conducted. The Phase I noted evidence of illegal dumping, including 55-gallon drums and above ground storage tanks, throughout the Boynton Yards area. During Phase I activities, three monitoring wells were installed within the limits of present-day B-3, and one soil sample was collected. Petroleum contamination was not encountered in groundwater, and it was concluded that the impacts detected in 1985 had either degraded or migrated off-site. Lead at 348 mg/kg was detected in one sample and was attributed to general urban soil conditions.

A Baseline Public Health Assessment was submitted for the Site in February 1990. A Phase II Waiver Statement was submitted to MassDEP in April 1990. Remedial actions in 1992-1994 included the removal of illegally dumped debris, removal and disposal of two, 5500-gallon fuel oil USTs and excavation of impacted soil surrounding the USTs. The RTN was closed with a Waiver Completion Statement dated 29 July 1994.

RTN 3-0001971 (Parcel B-2)

RTN 3-1971 was assigned in 1990 following the removal of two 5,000-gallon #6 fuel oil USTs and one, 5,000-gallon #2 fuel oil UST associated with Research Foods, a slaughterhouse/meet packaging facility. Elevated total petroleum hydrocarbon concentrations were detected in soil and approximately 40 cubic yards of soil was excavated. In 1991, further investigations were performed, an additional two #6 fuel oil USTs were discovered, and total petroleum hydrocarbons were identified in soil and groundwater. In 1992, the additional USTs were removed, and 900 tons of petroleum impacted soil was excavated and disposed. Confirmatory sampling indicated that petroleum concentrations had been reduced to background. In June 1995, a Class A-1 Response Action Outcome was submitted for the Site.

SITE CHARACTERIZATION

Soil Quality Assessment

In August – September 2017, a soil precharacterization program consisting of 12 geoprobes, 4 test pits and 10 test boring explorations was conducted to obtain subsurface information for geotechnical design, and to collect soil samples for analytical testing to characterize soil anticipated to be excavated and transported off-site as part of proposed Site redevelopment. Four groundwater observation wells, screened at the groundwater table, were installed in competed boreholes. Exploration locations are shown on Figure 2.

Samples were submitted to Alpha Analytical Laboratories of Westborough, Massachusetts for one or more of the following analyses:

- Volatile Organic Compounds (VOCs)
- Semivolatile Organic Compounds (SVOCs)
- Total Petroleum Hydrocarbons (TPH)
- Extractable Petroleum Hydrocarbons (EPH) carbon ranges
- Volatile Petroleum Hydrocarbons (VPH) carbon ranges
- MCP 14 metals
- Total Polychlorinated Biphenyls (PCBs)
- Toxicity Characteristic Leaching Procedure (TCLP) lead, when applicable
- Specific Conductance
- Waste Characteristics (total solids, corrosivity, ignitability, and reactivity)

Lot 5 - At Lot 5, soil samples contained concentrations of lead and PAHs, and at one location, VOCs, at concentrations exceeding RCS-1. Concentrations of PAHs and VOCs were highest in the upper three feet of fill (soil emplaced during URAM activities). Concentrations of lead were highest in soil between approximately 3 and 8 feet below grade (historic fill in place prior to URAM activities). TCLP lead at a concentration of greater than 5 mg/kg was detected in one sample (F3_3.5-8). Analytes at concentrations exceeding RCS-1 were generally not detected in the cohesive fill. Natural soil was not analyzed.

Parcel B-3 -At Parcel B-3, PAHs, TPH, lead, antimony, and PCBs were detected at concentrations exceeding RCS-1 thresholds in the fill. EPH and VPH analysis was performed at two locations where elevated TPH was detected; no VPH or EPH fractions were detected at concentration exceeding RCS-1 thresholds. The upper five feet of fill was generally the most impacted, with all but one sample in that strata containing one or more analyte at concentrations exceeding RCS-1. The majority of fill samples collected from five feet below grade or deeper contained concentrations of analytes below RCS-1 thresholds. No analytes were detected at concentrations exceeding RCS-1 in the natural samples analyzed.

Parcel B-2 -At Parcel B-2, lead and PAHs were detected in the fill at one location (HA17-1). Analyte concentration above RCS-1 thresholds were not detected in the fill in the other borings or in the natural samples analyzed.

Refer to the attached Table I for a summary of the chemical test results on soil samples.

Exploration reports from each exploration and observation well installation logs are provided in Appendix A. The Haley & Aldrich Soil Classification Definition for Off-Site Disposal describing soil precharacterization group types is provided in Appendix B. Analytical laboratory data reports for recent soil samples collected are provided in Appendix C

Groundwater Quality Assessment

Following installation of monitoring wells in August – September 2017, each monitoring well was developed and sampled for VOCs, EPH and dissolved MCP 14 metals and iron. Refer to Table II for a summary of chemical test results from groundwater samples collected from the recently installed observation wells. The recent groundwater analysis indicated concentrations of dissolved lead in monitoring well E6 at concentrations above applicable MCP RCGW-2 reportable concentrations.

SUBSURFACE CONDITIONS

The subsurface conditions at the Site consist of approximately 3 to 16 feet of fill overlying naturally deposited marine clay approximately 16 to 42.5 feet thick. A thin layer of organic material and/or estuarine deposits were encountered below the fill layer in some, but not all locations, and glacial deposits were encountered below the marine clay in some, but not all locations. Refer to the table below for additional detail on each stratum.

Stratum	Top of Stratum Elevation (NAV88)	Stratum Thickness
Fill	G.S. (Approx. El. 12.5 to El 8)	3 to 16 ft
Cohesive Fill	El. 7 to El. 0.2	0 to 7.5 ft
Organic Deposits	El. 3.5 to El3.3	0 to 7.5 ft
Estuarine Deposits	El. 6.5 to El5.6	0 to 4.5 ft
Marine Deposits	El. 4.5 to El7.6	16 to 42.5 ft
Glacial Deposits	El21.4 to El38.1	4.5 to 20.5 ft
Bedrock	El25 to El51.6	N/A

Two fill units were encountered during the exploration program, and were generally characterized as predominately granular urban Fill overlying a Cohesive Fill. The thickness of the overall Fill stratum ranges from 6 to 14 feet.

- Fill: Light gray to brown to black poorly graded sand with varying amounts of silt and gravel, with traces of wood, asphalt, glass, metal, concrete, cinders, brick, clinkers, mortar, porcelain and plastic.
- Cohesive Fill: Light brown to olive silty/clayey sand with varying amounts of gravel, traces of brick particles, cinders, shells and fragments of lean clay. Cohesive fill was generally wet below 10 feet.

At Lot 5, Fill over Cohesive Fill was identified in each exploration location. On Parcel B-3, Fill was encountered at each location; Cohesive Fill was encountered beneath the Fill in some, but not all, explorations.

MCP REGULATORY CONSIDERATIONS

Lot 5

Soil quality data results indicated the presence of lead, PAHs, and VOCs at concentrations exceeding the applicable Reportable Concentration (RC); RCS-1. The concentration of lead in soil is consistent with levels reported in association with RTN 3-10897; however, the presence of PAHs and VOCs represent a new 120-Day Reportable Condition under the Massachusetts Contingency Plan. Based on discussions with you DLJ plans to submit a Release Notification Form (RNF) to MassDEP by 17 January 2018 which will begin the MCP regulatory process.

Contaminated soil will need to be managed under a Release Abatement Measure (RAM) Plan. The RAM Plan will include off-site removal of contaminated soil and on-site treatment of TCLP lead failed soil. RAM activities will be conducted primarily in conjunction with basement and foundation construction and Site improvements. In addition to excavation required for construction, remedial excavation of contaminated soil between the basement excavation and edge of the property will be required to remove residual contamination and achieve a Permanent Solution with No Conditions. RAM activities will also include controls to monitor and prevent fugitive dust and address construction worker exposures.

It is anticipated that RAM activities will reduce the exposures at the Site to the level that will not require the maintenance of engineering controls to prevent exposure to underlying soil thus allowing termination of the existing AUL currently in place on the property. Following construction, we anticipate a Permanent Solution with No Conditions can be achieved for both RTNs.

Parcel B-3

Soil quality data indicates that PAHs, PCBs, TPH, lead and antimony detected in soil and lead detected in groundwater represent a new 120-day Reportable Condition under the MCP. Based on discussions with you, DLJ plans to submit a RNF to MassDEP by 17 January 2018 which will begin the MCP regulatory process.

Contaminated soil and groundwater will need to be managed under a RAM Plan. The RAM Plan will include off-site removal of contaminated soil. RAM activities will be conducted primarily in conjunction with basement and foundation construction and Site improvements. RAM activities will also include controls to monitor and prevent fugitive dust and address construction worker exposures.

Excavation and dewatering as required for construction is anticipated to result in the removal of most contaminated soil from the property and will likely result in the remediation of impacted groundwater. Pending additional sampling on the southern portion of the property and development of civil and landscape design plans, limited excavation of fill not otherwise required for construction may be recommended. Following construction, we anticipate that a Permanent Solution with No Conditions will be achieved for the Site.

Parcel B-2

The concentrations of PAHs and lead detected in HA17-1 were below those established as background for soil containing coal or wood ash pursuant to MassDEP Technical Update "Background levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil," and coal was noted in the exploration. Contamination attributable to coal, coal ash or wood ash is exempt from reporting under the MCP, accordingly, no reporting is required at this time.

The MCP outlines a phased process for clean-ups at Sites regulated under the MCP. One year following notification, Sites that have not achieved regulatory closure must submit a Tier Classification and MCP Phase I Site Investigation Report. No new soil sampling or testing is required to meet this regulatory filing requirement; however, additional testing will be required to characterize soils for off-site removal assuming that construction will begin less than one year from notification. No new regulatory submittals will be required until 3 years from Tier Classification; however, it is anticipated that regulatory closure will be achieved before the next regulatory submittal deadline following Tier Classification.

CONSTRUCTION-RELATED CONSIDERATIONS FOR SOIL MANAGEMENT

Soils have been classified based on the type and level of contamination and comparison of these data to acceptance criteria at landfills and other receiving facilities. The categories of soil encountered, and disposal options are shown on Figures 3 through 5 for Parcel B-2 and Figures 6 through 8 for Lot 5. For the purposes of this report, nearby soil quality data and historic information was used to develop assumptions for soil classification of cells without data. The contractors bidding the earthwork must review the available data and determine the appropriate receiving facilities for each Group classification of soil.

- <u>Fill</u> The upper, predominately granular Fill at the Site typically contains concentrations of contaminants above the applicable Reportable Concentrations (RCS-1). Soil with concentrations of contaminant greater than RCS-1 but meeting criteria for reuse at Massachusetts unlined or lined landfills as outlined in MassDEP Policy #COMM-97-001 can be transported to in-state landfills. Fill soil that contains concentrations of contaminants at above those acceptable for reuse at an in-state landfills will require management at in-state or out-of-state recycling or asphalt batch facilities, or disposal at an out of state landfill.
- <u>Cohesive Fill Cohesive Fill at the Site typically contains concentrations of contaminants below</u>
 Reportable Concentrations. It is recommended that soil be managed in accordance with the
 applicable provisions of the MCP and MassDEP policies listed below regarding reuse of soil at
 other locations:
 - MassDEP Policy WSC#-13-500, "Similar Soils Provision Guidance", dated September 4, 2014; and
 - MassDEP Policy #COMM-15-01 "Interim Policy on the Reuse of Soils for Large Reclamation Projects" dated August 28, 2015.
- <u>TCLP Soils</u> Soil that exceed the RCRA criteria for toxicity are classified as a characteristic
 hazardous waste. These soils may be treated in-place and upon confirmatory testing can be
 classified as a non-hazardous waste. Treated soils will need to be transported to a regional outof-state non-hazardous RCRA Subtitle D landfill. While in-situ treatment is not required, it is a
 cost-effective alternative to transporting and disposing of the soil as hazardous waste at an outof-region RCRA Subtitle C landfill facility.
- <u>Natural Soils</u> A majority of the soil removed from basement excavations at Parcel B-3 and Lot 5 will consist of naturally deposited soil with no detectable concentrations of contaminants and background levels of metals below the Reportable Concentrations. It is recommended that soil be managed in accordance with the applicable provisions of the MCP and MassDEP policies listed below regarding reuse of soil at other locations:
 - MassDEP Policy WSC#-13-500, "Similar Soils Provision Guidance", dated September 4, 2014; and
 - MassDEP Policy #COMM-15-01 "Interim Policy on the Reuse of Soils for Large Reclamation Projects" dated August 28, 2015.

CONSTRUCTION-RELATED CONSIDERATIONS FOR GROUNDWATER MANAGEMENT

Dewatering is anticipated to be required during construction on both Parcel B-3 and Lot 5. Sewers in the vicinity of the Site ultimately discharge to the MWRA system; therefore, an MWRA discharge permit will be required in support of dewatering. We anticipate that a single MWRA permit can be obtained for both parcels. Prior to preparation of the MWRA permit, groundwater sampling and analysis must be performed for parameters specified by MWRA.

Monitoring wells installed during our initial subsurface exploration program were screened across the groundwater table, where petroleum hydrocarbons are most likely to be detected.

DATA LIMITATIONS AND RECOMMENDED SUPPLEMENTAL TESTING

Soil Quality Data Gaps

Parcel B-3 - Due to limitations to Site access at Parcel B-3, precharacterization data was not obtained from the southwest portion of the parcel. A supplemental sampling program will be planned for after Lanco Scaffolding Company vacates the property or provides access to the areas requiring characterization. Additional samples will also be required to characterize natural soil not characterized during the initial program due to changes in project design, to delineate conditions encountered, and to meet disposal facility frequency requirements.

Lot 5 - Similarly, no natural samples were collected at Lot 5 based on our understanding of the project scope at the time of investigation. Based on new design plans for a one-level below grade basement, additional samples will need to be collected from natural material at Lot 5 to characterize the material, and to meet frequency and delineation requirements for disposal facilities.

Parcel B-2 - Additional explorations will be required prior to development of Parcel B-2. Based on Site history and the soil conditions encountered on parcels B-3 and Lot 5, we anticipate that conditions requiring reporting to MassDEP will be encountered during future explorations.

Groundwater Quality Data Gaps

Parcel B-3 - Due to the depth of the basement currently planned for Parcel B-3, we recommend the installation of a deep monitoring well to evaluate groundwater quality at depth. Data collected from the deep monitoring well would provide information about the quality of water likely to be encountered during dewatering and that will likely be present in the underdrain system of the future building. A deep well will allow for an evaluation for chlorinated solvents, which are denser than water and would likely be located at depth.

Installation of additional shallow monitoring wells in the vicinity of well E-6 where lead in groundwater was encountered is recommended to evaluate the nature and extent of the impact in support of future Site closure.

CLOSURE

Please contact us if you have any questions or require additional information.

Sincerely yours, HALEY & ALDRICH, INC.

Grace Howard, EIT Environmental Engineer

Beck J. Straley Project Manager

Keith E. Johnson, P.E., LSP

Vice President

Attachments:

iliciits.	
Table I	Summary of Soil Quality Data
Table II	Summary of Groundwater Quality Data
Figure 1	Project Locus
Figure 2	Site and Subsurface Exploration Location Plan
Figure 3	Parcel B-3 Soil Precharacterization Plan – Upper Fill
Figure 4	Parcel B-3 Soil Precharacterization Plan – Lower Fill
Figure 5	Parcel B-3 Soil Precharacterization Plan – Natural Deposits
Figure 6	Lot 5 Soil Precharacterization Plan – URAM Fill
Figure 7	Lot 5 Soil Precharacterization Plan – Upper Fill
Figure 8	Lot 5 Soil Precharacterization Plan – Cohesive Fill
Appendix A	Exploration Reports
Appendix B	Haley & Aldrich Soil Precharacterization Group Classification System
Appendix C	Analytical Laboratory Reports
Appendix D	Previous Reports

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

FILE NO. 1307/1-002																				
Parcel	Regulatory Criteria							el B-2									Parcel B-3			
Precharacterization Grid				1				el B-2									A4			A5
Location Name		HA17-1	HA17-1	HA17-1	HA17-1	HA17-2	HA17-2	HA17-2	HA17-2	HA17-3 (OW)	HA17-3 (OW)	HA17-3 (OW)	HA17-3 (OW)	A4	A4	A4	A4	A4	A4	A5-TP
Sample Name	MCP	HA17-1_0-5	HA17-1_5-10	HA17-1_10-15	HA17-1_15-20	HA17-2_0-5	HA17-2_5-12	HA17-2_12-15	HA17-2_15-20	HA17-3_0-5	HA17-3_5-14	HA17-3_14-16	HA17-3_24-26	A4_0-5	A4_5-9	A4_10-15	A4_20-24	A4_29-31	A4_39-41	TP-A5_0-5
Sample Date	Reportable	08/28/2017	08/28/2017	08/28/2017	08/28/2017	08/25/2017	08/25/2017	08/25/2017	08/25/2017	08/29/2017	08/29/2017	08/29/2017	08/29/2017	08/18/2017	08/18/2017	08/18/2017	08/18/2017	08/18/2017	08/18/2017	08/14/2017
	Concentrations																	1	1	
	RCS-1	L1730156-01	L1730156-02											L1729166-01						L1728308-01
Lab Sample ID	2014	L1730482-01	L1730482-02	L1730156-03	L1730156-04	L1730101-01	L1730101-02	L1730101-03	L1730101-04	L1730396-01	L1730396-02	L1730396-03	L1730396-04	L1729547-01	L1729166-02	L1729166-03	L1729166-04	L1729166-05	L1729166-06	L1728602-01
Sample Depth (bgs)	2014	0 - 5 (ft)	5 - 10 (ft)	10 - 15 (ft)	15 - 20 (ft)	0 - 5 (ft)	5 - 12 (ft)	12 - 15 (ft)	15 - 20 (ft)	0 - 5 (ft)	5 - 14 (ft)	14 - 16 (ft)	24 - 26 (ft)	0 - 5 (ft)	5 - 9 (ft)	10 - 15 (ft)	20 - 24 (ft)	29 - 31 (ft)	39 - 41 (ft)	0 - 5 (ft)
Soil Description		FILL	FILL	SAND	CLAY	FILL	FILL	ORGANICS	CLAY	FILL	FILL	CLAY	CLAY	FILL	FILL	CLAY	CLAY	CLAY	CLAY	FILL
Soil Disposal Classification		II-1	II-1	I-2	I-2	I-3	I-3	I-3	I-2	I-3	I-3	I-2	I-2	II-1	I-3	I-2	I-2	I-2	I-2	II-3
·																				
Volatile Organic Compounds (mg/kg)																				
1,2,4-Trimethylbenzene	1000	ND (0.2)	ND (0.0031)	ND (0.0026)	ND (0.0029)	ND (0.0029)	ND (0.0026)	ND (0.0034)	ND (0.0032)	ND (0.0028)	ND (0.0025)	ND (0.0031)	ND (0.0037)	ND (0.0045)	ND (0.0024)	ND (0.0036)	ND (0.0031)	ND (0.0034)	ND (0.0042)	ND (0.0027)
1,3,5-Trimethylbenzene	10	ND (0.2)	ND (0.0031)	ND (0.0026)	ND (0.0029)	ND (0.0029)	ND (0.0026)	ND (0.0034)	ND (0.0032)	ND (0.0028)	ND (0.0025)	ND (0.0031)	ND (0.0037)	ND (0.0045)	ND (0.0024)	ND (0.0036)	ND (0.0031)	ND (0.0034)	ND (0.0042)	ND (0.0027)
2-Butanone (Methyl Ethyl Ketone)	4	ND (0.51)	ND (0.0078)	ND (0.0066)	ND (0.0073)	ND (0.0073)	ND (0.0066)	ND (0.0086)	ND (0.008)	ND (0.007)	ND (0.0062)	ND (0.0078)	ND (0.0093)	ND (0.011)	ND (0.0061)	ND (0.009)	ND (0.0077)	ND (0.0086)	ND (0.01)	ND (0.0067)
Acetone	6	ND (1.8)	0.033	ND (0.024)	ND (0.026)	ND (0.026)	ND (0.024)	ND (0.031)	ND (0.029)	0.035	ND (0.022)	ND (0.028)	ND (0.034)	ND (0.04)	ND (0.022)	ND (0.032)	ND (0.028)	ND (0.031)	ND (0.037)	ND (0.024)
Benzene	2	ND (0.051)	ND (0.00078)	ND (0.00066)	ND (0.00073)	ND (0.00073)	ND (0.00066)	ND (0.00086)	ND (0.0008)	0.00088	ND (0.00062)	ND (0.00078)	ND (0.00093)	ND (0.0011)	ND (0.00061)	ND (0.0009)	ND (0.00077)	ND (0.00086)	ND (0.001)	ND (0.00067)
Ethylbenzene	40	ND (0.051)	ND (0.00078)	ND (0.00066)	ND (0.00073)	ND (0.00073)	ND (0.00066)	ND (0.00086)	ND (0.0008)	ND (0.0007)	ND (0.00062)	ND (0.00078)	ND (0.00093)	ND (0.0011)	ND (0.00061)	ND (0.0009)	ND (0.00077)	ND (0.00086)	ND (0.001)	ND (0.00067)
Isopropylbenzene (Cumene)	1000	ND (0.051)	ND (0.00078)	ND (0.00066)	ND (0.00073)	ND (0.00073)	ND (0.00066)	ND (0.00086)	ND (0.0008)	ND (0.0007)	ND (0.00062)	ND (0.00078)	ND (0.00093)	ND (0.0011)	ND (0.00061)	ND (0.0009)	ND (0.00077)	ND (0.00086)	ND (0.001)	ND (0.00067)
Naphthalene	1000	1.3	ND (0.0031)	ND (0.0026)	ND (0.0029)	ND (0.0029)	ND (0.0026)	ND (0.0034)	ND (0.0032)	0.0051	ND (0.0025)	ND (0.0031)	ND (0.0037)	ND (0.0045)	ND (0.0024)	ND (0.0036)	ND (0.0031)	ND (0.0034)	ND (0.0042)	ND (0.0027)
n-Butylbenzene	NA	ND (0.051)	ND (0.0031)	ND (0.0026)	ND (0.0023)	ND (0.0023)	ND (0.0026)	ND (0.0034)	ND (0.0032)	ND (0.0007)	ND (0.0023)	ND (0.0031) ND (0.00078)	ND (0.0037)	ND (0.0043) ND (0.0011)	ND (0.0024)	ND (0.0030)	ND (0.0031)	ND (0.0034)	ND (0.0042)	ND (0.0027)
*				ND (0.00066)		ND (0.00073) ND (0.00073)	ND (0.00066)		ND (0.0008)	ND (0.0007)	ND (0.00062)			ND (0.0011) ND (0.0011)		ND (0.0009) ND (0.0009)	ND (0.00077) ND (0.00077)	ND (0.00086)		ND (0.00067)
n-Propylbenzene	100	ND (0.051)	ND (0.00078)		ND (0.00073)	, ,	, ,	ND (0.00086)				ND (0.00078)	ND (0.00093)		ND (0.00061)			, ,	ND (0.001)	
Toluene Trichlorofluoromothano (CEC 11)	30	ND (0.077)	ND (0.0012)	ND (0.00099)	ND (0.0011)	ND (0.0011)	ND (0.00098)	ND (0.0013)	ND (0.0012)	ND (0.001)	ND (0.00093)	ND (0.0012)	ND (0.0014)	ND (0.0017)	ND (0.00091)	ND (0.0014)	ND (0.0012)	ND (0.0013)	ND (0.0016)	ND (0.001)
Trichlorofluoromethane (CFC-11)	1000	ND (0.2)	ND (0.0031)	ND (0.0026)	ND (0.0029)	ND (0.0029)	ND (0.0026)	ND (0.0034)	ND (0.0032)	ND (0.0028)	ND (0.0025)	ND (0.0031)	ND (0.0037)	ND (0.0045)	ND (0.0024)	ND (0.0036)	ND (0.0031)	ND (0.0034)	ND (0.0042)	ND (0.0027)
Xylene (total)	100	ND (0.1)	ND (0.0016)	ND (0.0013)	ND (0.0015)	ND (0.0015)	ND (0.0013)	ND (0.0017)	ND (0.0016)	0.0076	ND (0.0012)	ND (0.0016)	ND (0.0019)	ND (0.0022)	ND (0.0012)	ND (0.0018)	ND (0.0015)	ND (0.0017)	ND (0.0021)	ND (0.0013)
SUM of Volatile Organic Compounds	NA	1.3	0.033	ND	ND	ND	ND	ND	ND	0.04858	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semi-Volatile Organic Compounds (mg/kg)																		1	1	
2-Methylnaphthalene	0.7	0.27	0.41	ND (0.23)	ND (0.24)	ND (0.22)	ND (0.23)	ND (0.27)	ND (0.26)	ND (0.44)	ND (0.22)	ND (0.26)	ND (0.27)	ND (0.53)	ND (0.23)	ND (0.26)	ND (0.26)	ND (0.28)	ND (0.26)	1.2
Acenaphthene	4	1.2	0.61	ND (0.15)	ND (0.16)	ND (0.15)	ND (0.15)	ND (0.18)	ND (0.18)	ND (0.29)	ND (0.15)	ND (0.17)	ND (0.18)	ND (0.35)	ND (0.15)	ND (0.17)	ND (0.18)	ND (0.18)	ND (0.18)	4.9
Acenaphthylene	1	0.28	ND (0.16)	ND (0.15)	ND (0.16)	ND (0.15)	ND (0.15)	ND (0.18)	ND (0.18)	ND (0.29)	ND (0.15)	ND (0.17)	ND (0.18)	ND (0.35)	ND (0.15)	ND (0.17)	ND (0.18)	ND (0.18)	ND (0.18)	0.51
Anthracene	1000	2.4	1	ND (0.12)	ND (0.12)	0.36	ND (0.11)	ND (0.13)	ND (0.13)	0.42	ND (0.11)	ND (0.13)	ND (0.13)	0.88	ND (0.11)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	7.9
Benzo(a)anthracene	7	5.9	1.6	0.13	ND (0.12)	1.2	ND (0.11)	ND (0.13)	ND (0.13)	1.7	ND (0.11)	ND (0.13)	ND (0.13)	2.3	ND (0.11)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	16
Benzo(a)pyrene	2	4.5	1.1	ND (0.15)	ND (0.16)	1.2	ND (0.15)	ND (0.18)	ND (0.18)	1.4	ND (0.15)	ND (0.17)	ND (0.18)	2.5	ND (0.15)	ND (0.17)	ND (0.18)	ND (0.18)	ND (0.18)	14
Benzo(b)fluoranthene	7	6.5	1.4	0.14	ND (0.12)	1.8	0.12	ND (0.13)	ND (0.13)	1.7	ND (0.11)	ND (0.13)	ND (0.13)	3.2	ND (0.11)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	18
Benzo(g,h,i)perylene	1000	2.8	0.57	ND (0.15)	ND (0.16)	0.76	ND (0.15)	ND (0.18)	ND (0.18)	0.8	ND (0.15)	ND (0.17)	ND (0.18)	1.4	ND (0.15)	ND (0.17)	ND (0.18)	ND (0.18)	ND (0.18)	7
Benzo(k)fluoranthene	70	2.0	0.48	ND (0.12)	ND (0.12)	0.54	ND (0.11)	ND (0.13)	ND (0.13)	0.57	ND (0.11)	ND (0.13)	ND (0.13)	0.98	ND (0.11)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	5.6
bis(2-Ethylhexyl)phthalate	90	0.27	ND (0.2)	ND (0.12)	ND (0.12)	ND (0.19)	ND (0.11) ND (0.19)	ND (0.13)	ND (0.22)	12	ND (0.11)	ND (0.21)	ND (0.22)	ND (0.44)	ND (0.11)	ND (0.22)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.18)
Chrysene	70	5.9	1.5	0.13	ND (0.12)	1.3	ND (0.11)	ND (0.13)	ND (0.13)	1.6	ND (0.11)	ND (0.21)	ND (0.13)	2.1	ND (0.11)	ND (0.22)	ND (0.22)	ND (0.23)	ND (0.22)	15
Dibenz(a,h)anthracene	0.7	0.74	0.16	ND (0.12)	ND (0.12) ND (0.12)	0.18			ND (0.13) ND (0.13)	ND (0.22)	ND (0.11) ND (0.11)	ND (0.13)	ND (0.13)	0.36	ND (0.11) ND (0.11)	ND (0.13) ND (0.13)	ND (0.13) ND (0.13)	ND (0.14)	ND (0.13)	2.5
1 1 1		0.7	0.16				ND (0.11)	ND (0.13)										ND (0.14)		
Dibenzofuran	100			ND (0.19)	ND (0.2)	ND (0.19)	ND (0.19)	ND (0.22)	ND (0.22)	ND (0.37)	ND (0.18)	ND (0.21)	ND (0.22)	ND (0.44) 4.3	ND (0.19)	ND (0.22)	ND (0.22)	` '	ND (0.22)	3.1
Fluoranthene	1000	15	4.2	0.32	ND (0.12)	3.3	0.29	ND (0.13)	ND (0.13)	3	ND (0.11)	ND (0.13)	ND (0.13)		ND (0.11)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	35
Fluorene	1000	1.1	0.7	ND (0.19)	ND (0.2)	ND (0.19)	ND (0.19)	ND (0.22)	ND (0.22)	ND (0.37)	ND (0.18)	ND (0.21)	ND (0.22)	ND (0.44)	ND (0.19)	ND (0.22)	ND (0.22)	ND (0.23)	ND (0.22)	5.4
Indeno(1,2,3-cd)pyrene	/	3.3	0.66	ND (0.15)	ND (0.16)	0.85	ND (0.15)	ND (0.18)	ND (0.18)	0.84	ND (0.15)	ND (0.17)	ND (0.18)	1.6	ND (0.15)	ND (0.17)	ND (0.18)	ND (0.18)	ND (0.18)	8.1
Naphthalene	4	0.47	0.94	ND (0.19)	ND (0.2)	ND (0.19)	ND (0.19)	ND (0.22)	ND (0.22)	ND (0.37)	ND (0.18)	ND (0.21)	ND (0.22)	ND (0.44)	ND (0.19)	ND (0.22)	ND (0.22)	ND (0.23)	ND (0.22)	2.1
Phenanthrene	10	11	4.8	0.32	ND (0.12)	1.9	0.19	ND (0.13)	ND (0.13)	1.7	ND (0.11)	ND (0.13)	ND (0.13)	3	ND (0.11)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	30
Pyrene	1000	13	3.5	0.28	ND (0.12)	2.6	0.21	ND (0.13)	ND (0.13)	3.5	ND (0.11)	ND (0.13)	ND (0.13)	3.6	ND (0.11)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	29
SUM of Semi-Volatile Organic Compounds	NA	77.33	24.19	1.32	ND	15.99	0.81	ND	ND	29.23	ND	ND	ND	26.22	ND	ND	ND	ND	ND	205.31
Total Petroleum Hydrocarbons (mg/kg)																		1	İ	
Petroleum hydrocarbons	1000	688	83.3	ND (38)	ND (38.7)	473	ND (37.6)	49.1	ND (43.7)	433	ND (34.9)	ND (41.7)	ND (43.8)	480	42.3	ND (41.7)	ND (43.1)	ND (44.8)	ND (42.9)	836
,				,	· '		, -,		` '		, -,	` '	,			` ,		, -,	<u> </u>	
EPH (mg/kg)	40																	1	İ	
MADEP C11-C22 Aromatic Hydrocarbons, Adjusted	1000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C11-C22 Aromatic Hydrocarbons, Unadjusted	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C19-C36 Aliphatic Hydrocarbons	3000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C9-C18 Aliphatic Hydrocarbons	1000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Inorganic Compounds (mg/kg)																		1	İ	
Antimony	20	ND (2.16)	ND (2.4)	ND (2.33)	ND (2.36)	ND (2.26)	ND (2.26)	ND (2.63)	ND (2.56)	ND (2.16)	ND (2.16)	ND (2.52)	ND (2.62)	5.32	ND (2.3)	ND (2.63)	ND (2.71)	ND (2.7)	ND (2.56)	ND (2.14)
Arsenic	20	6.88	5.22	2.82	12.2	5.28	5.13	7.97	5.26	3.8	2.09	9.08	11.4	17.7	3.27	7.76	13.2	16	8.02	5.47
Barium	1000	60.8	150	29.9	56	35.9	26	34.2	67.5	35.8	24.7	94.5	72.2	163	27.3	85.2	103	106	80.1	51
Beryllium	90	0.264	ND (0.24)	0.251	0.26	0.23	0.249	0.374	0.431	ND (0.216)	ND (0.216)	0.606	0.494	0.615	0.239	0.774	0.911	0.998	0.764	0.232
Cadmium	70	1.2	0.786	0.81	1.03	0.665	0.493	0.816	1.02	0.613	0.584	1.33	1.11	3.26	0.575	0.953	0.841	0.852	0.707	0.88
Chromium	100	21.6	13.9	15.9	30.9	16.2	15.7	24.5	33.4	16	12.4	43.7	36.8	22	13.7	46.2	48.8	47.9	38.1	14.3
Lead	200	158	429	11.7	8.36	51.3	12.8	9.97	8.25	82.2	7.62	9.42	8.96	349	15.9	9.55	11	11.2	9.48	114
Mercury	200	0.403	2.03	ND (0.075)	ND (0.077)	0.267	0.217	9.97 ND (0.087)	ND (0.084)	0.104	ND (0.07)	9.42 ND (0.081)	ND (0.086)	0.336	ND (0.073)	ND (0.083)	ND (0.086)	ND (0.091)	ND (0.085)	0.153
,				10.7					ND (0.084) 22.9							32.7	34.3		26.7	14.8
Nickel Solonium	600	14 ND (2.16)	10.3		21.4	14.4 ND (2.26)	10.1	16 ND (2.63)		10.3	9.19 ND (2.16)	28.6	24.6	23	11.2			33.1		
Selenium	400	ND (2.16)	ND (2.4)	ND (2.33)	ND (2.36)	ND (2.26)	ND (2.26)	ND (2.63)	ND (2.56)	ND (2.16)	ND (2.16)	ND (2.52)	ND (2.62)	ND (2.56)	ND (2.3)	ND (2.63)	ND (2.71)	ND (2.7)	ND (2.56)	ND (2.14)
Silver	100	ND (0.433)	ND (0.48)	ND (0.465)	ND (0.472)	ND (0.452)	ND (0.452)	ND (0.526)	ND (0.513)	ND (0.432)	ND (0.432)	ND (0.505)	ND (0.525)	ND (0.512)	ND (0.46)	ND (0.526)	ND (0.542)	ND (0.539)	ND (0.513)	ND (0.429)
Thallium	8	ND (2.16)	ND (2.4)	ND (2.33)	ND (2.36)	ND (2.26)	ND (2.26)	ND (2.63)	ND (2.56)	ND (2.16)	ND (2.16)	ND (2.52)	ND (2.62)	ND (2.56)	ND (2.3)	ND (2.63)	ND (2.71)	ND (2.7)	ND (2.56)	ND (2.14)
Vanadium	400	25.2	18.2	24.2	38.1	18.7	19.8	31.6	44.9	17	19	57.4	48.4	42	23.4	60.5	59.1	60.9	48.5	28.6
Zinc	1000	123	124	37.2	50.7	72.7	26.5	38.3	59.5	50.8	32.4	68.5	63.3	266	65	75.2	81.5	82.9	67.4	111
TCLP Inorganic Compounds (mg/L)																		1	İ	
Lead	NA	0.957	ND (0.5)	-	_	-	_	_	_	-	_	-	_	ND (0.5)	_	-	_	_	_	ND (0.5)
	****		, <i>j</i>			1								· /						, , , ,

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

	Parcel	Regulatory Criteria						Paro	cel B-2									Parcel B-3			
Precharacte	erization Grid							Paro	el B-2									A4			A5
Lo	ocation Name		HA17-1	HA17-1	HA17-1	HA17-1	HA17-2	HA17-2	HA17-2	HA17-2	HA17-3 (OW)	HA17-3 (OW)	HA17-3 (OW)	HA17-3 (OW)	A4	A4	A4	A4	A4	A4	A5-TP
S	Sample Name	MCP	HA17-1_0-5	HA17-1_5-10	HA17-1_10-15	HA17-1_15-20	HA17-2_0-5	HA17-2_5-12	HA17-2_12-15	HA17-2_15-20	HA17-3_0-5	HA17-3_5-14	HA17-3_14-16	HA17-3_24-26	A4_0-5	A4_5-9	A4_10-15	A4_20-24	A4_29-31	A4_39-41	TP-A5_0-5
	Sample Date	Reportable	08/28/2017	08/28/2017	08/28/2017	08/28/2017	08/25/2017	08/25/2017	08/25/2017	08/25/2017	08/29/2017	08/29/2017	08/29/2017	08/29/2017	08/18/2017	08/18/2017	08/18/2017	08/18/2017	08/18/2017	08/18/2017	08/14/2017
		Concentrations																			
		RCS-1	L1730156-01	L1730156-02											L1729166-01						L1728308-01
La	Lab Sample ID	2014	L1730482-01	L1730482-02	L1730156-03	L1730156-04	L1730101-01	L1730101-02	L1730101-03	L1730101-04	L1730396-01	L1730396-02	L1730396-03	L1730396-04	L1729547-01	L1729166-02	L1729166-03	L1729166-04	L1729166-05	L1729166-06	L1728602-01
Sample	le Depth (bgs)	2014	0 - 5 (ft)	5 - 10 (ft)	10 - 15 (ft)	15 - 20 (ft)	0 - 5 (ft)	5 - 12 (ft)	12 - 15 (ft)	15 - 20 (ft)	0 - 5 (ft)	5 - 14 (ft)	14 - 16 (ft)	24 - 26 (ft)	0 - 5 (ft)	5 - 9 (ft)	10 - 15 (ft)	20 - 24 (ft)	29 - 31 (ft)	39 - 41 (ft)	0 - 5 (ft)
Soi	il Description		FILL	FILL	SAND	CLAY	FILL	FILL	ORGANICS	CLAY	FILL	FILL	CLAY	CLAY	FILL	FILL	CLAY	CLAY	CLAY	CLAY	FILL
Soil Disposal (Classification		II-1	II-1	I-2	I-2	I-3	I-3	I-3	I-2	I-3	I-3	I-2	I-2	II-1	I-3	I-2	I-2	I-2	I-2	II-3
PCBs (mg/kg)																					
Aroclor-1242 (PCB-1242)		1	ND (0.0374)	ND (0.0403)	ND (0.0393)	ND (0.0388)	ND (0.0375)	ND (0.0374)	ND (0.0448)	ND (0.0439)	ND (0.0374)	ND (0.036)	ND (0.0422)	ND (0.0432)	ND (0.0444)	ND (0.0373)	ND (0.0413)	ND (0.0439)	ND (0.0446)	ND (0.0434)	0.0436
Aroclor-1248 (PCB-1248)		1	0.171	ND (0.0403)	ND (0.0393)	ND (0.0388)	ND (0.0375)	ND (0.0374)	ND (0.0448)	ND (0.0439)	ND (0.0374)	ND (0.036)	ND (0.0422)	ND (0.0432)	ND (0.0444)	ND (0.0373)	ND (0.0413)	ND (0.0439)	ND (0.0446)	ND (0.0434)	ND (0.036)
Aroclor-1254 (PCB-1254)		1	0.0626	ND (0.0403)	ND (0.0393)	ND (0.0388)	ND (0.0375)	ND (0.0374)	ND (0.0448)	ND (0.0439)	ND (0.0374)	ND (0.036)	ND (0.0422)	ND (0.0432)	ND (0.0444)	ND (0.0373)	ND (0.0413)	ND (0.0439)	ND (0.0446)	ND (0.0434)	0.0569
Aroclor-1260 (PCB-1260)		1	0.0393	ND (0.0403)	ND (0.0393)	ND (0.0388)	ND (0.0375)	ND (0.0374)	ND (0.0448)	ND (0.0439)	ND (0.0374)	ND (0.036)	ND (0.0422)	ND (0.0432)	ND (0.0444)	ND (0.0373)	ND (0.0413)	ND (0.0439)	ND (0.0446)	ND (0.0434)	0.0435
SUM of PCBs		1	0.2729	ND	ND	ND	ND	ND	0.144												
Other																					
Total Solids (%)		NA	86.8	80.2	84	81	86.6	86.6	72.3	74.9	88	89.7	77.7	74.4	74.2	86.3	75.8	73.2	71.2	74	89.3
Reactive Cyanide (mg/kg)		NA	ND (125)	ND (125)	ND (125)	ND (125)	ND (130)	ND (130)	ND (130)	ND (130)	ND (130)	ND (130)	ND (130)	ND (130)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)
Reactive Sulfide (mg/kg)		NA	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)
Ignitability (Flashpoint)		NA	NI	NI	NI	NI	NI	NI	NI												
pH (lab) (pH units)		NA	8.6	8	8.6	8.2	8.1	7.5	7.7	8.2	9.5	8.3	8.5	8.2	7.7	7.6	8.1	7.3	8.2	8.8	7.9
Conductivity (umhos/cm)		NA	360	230	140	410	99	79	150	100	150	28	150	410	64	65	140	330	300	120	80
VPH (mg/kg)																					
MADEP C5-C8 Aliphatic Hydrocarbons, Adjusted		100	_	-	-	-	-	-	-	-	-	_	-	-	-	_	_	_	-	_	_
MADEP C5-C8 Aliphatic Hydrocarbons, Unadjusted		NA	_	-	-	-	-	-	-	_	-	-	-	-	-	_	_	_	-	_	_
MADEP C9-C10 Aromatic Hydrocarbons		100	_	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	-	_	_
MADEP C9-C12 Aliphatic Hydrocarbons, Adjusted		1000	_	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	-	_	_
MADEP C9-C12 Aliphatic Hydrocarbons, Unadjusted	<u> </u>	NA	-			-	-	-	-	-	-	-	-			-	-		-		-

ABBREVIATIONS AND NOTES:

-: Not Analyzed

NA: Not Applicable

ND (2.5): Not detected, number in parentheses is the laboratory detection limit

NI: Not Ignitable

- Bold values indicate an exceedance of the RCS-1 criteria or RCRA limits for TCLP.

⁻ VOC, SVOC and PCB analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

FILE NO. 1307/1-002																				
Parcel	Regulatory Criteria										Parcel B-3				-					
Precharacterization Grid			A5			46	T		B4	ļ	B5	Т	Be		С		_	1	5	
Location Name		A5-TP	A5-TP	A6 (OW)	A6 (OW)	A6 (OW)	A6 (OW)	B4	B4	B5-TP	B5-TP	B5-TP	В6	В6	C4	C4	C5	C5	C5	C5
Sample Name	MCP	TP-A5_5-6.5	TP-A5_6.5-8.5	A6_0-5	A6_5-9	A6_10-15	A6_15-20	B4_0-5	B4_5-7	TP-B5_0-4.5	TP-B5_4.5-7.0	TP-B5_7-9	B6_0-5	B6_5-10	C4_0-5	C4_5-12	C5_0-6	C5_6-10	C5_10-15	C5_15-19
Sample Date	Reportable	08/14/2017	08/14/2017	08/14/2017	08/14/2017	08/15/2017	08/15/2017	08/09/2017	08/09/2017	08/14/2017	08/14/2017	08/14/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017
	Concentrations							L1727786-03		L1728308-04			L1727786-01 L1728249-01		L1727786-09		L1727786-05			
Lab Sample ID	RCS-1	L1728308-02	L1728308-03	L1728305-01	L1728305-02	L1728393-01	L1728393-02	L1727780-03	L1727786-04	L1728602-02	L1728308-05	L1728308-06	L1728906-01	L1727786-02	L1728249-04	L1727786-10	L1728249-03	L1727786-06	L1727786-07	L1727786-08
Sample Depth (bgs)	2014	5 - 6.5 (ft)	6.5 - 8.5 (ft)	0 - 5 (ft)	5 - 9 (ft)	10 - 15 (ft)	15 - 20 (ft)	0 - 5 (ft)	5 - 7 (ft)	0 - 4.5 (ft)	4.5 - 7 (ft)	7 - 9 (ft)	0 - 5 (ft)	5 - 10 (ft)	0 - 5 (ft)	5 - 12 (ft)	0 - 6 (ft)	6 - 10 (ft)	10 - 15 (ft)	15 - 19 (ft)
Soil Description		FILL	ORGANICS	FILL	FILL	ORGANICS	CLAY	FILL	FILL	FILL	FILL	ORGANICS	FILL	FILL	FILL	FILL	FILL	CLAY	CLAY	CLAY
Soil Disposal Classification		1-3	1-2	II-1	1-3	I-2	I-2	II-1	I-3	II-1	I-3	I-2	II-3	I-3	II-1	1-3	II-1	I-2	I-2	I-2
Volatile Organic Compounds (mg/kg)																				
1,2,4-Trimethylbenzene	1000	ND (0.0026)	ND (0.0069)	ND (0.0028)	ND (0.0025)	ND (0.0053)	ND (0.004)	ND (0.0037)	ND (0.0032)	ND (0.0028)	ND (0.0023)	ND (0.0033)	ND (0.0083)	ND (0.0043)	ND (0.0045)	ND (0.0029)	ND (0.0043)	ND (0.0034)	ND (0.0024)	ND (0.0027)
1,3,5-Trimethylbenzene	10	ND (0.0026)	ND (0.0069)	ND (0.0028)	ND (0.0025)	ND (0.0053)	ND (0.004)	ND (0.0037)	ND (0.0032)	ND (0.0028)	ND (0.0023)	ND (0.0033)	ND (0.0083)	ND (0.0043)	ND (0.0045)	ND (0.0029)	ND (0.0043)	ND (0.0034)	ND (0.0024)	ND (0.0027)
2-Butanone (Methyl Ethyl Ketone)	4	ND (0.0066)	ND (0.017)	ND (0.007)	ND (0.0064)	ND (0.013)	ND (0.0099)	ND (0.0092)	ND (0.0081)	ND (0.0071)	ND (0.0058)	ND (0.0083)	0.022	ND (0.011)	ND (0.011)	0.008	ND (0.011)	ND (0.0086)	ND (0.0059)	ND (0.0069)
Acetone	6	0.027	0.086	ND (0.025)	ND (0.023)	ND (0.048)	ND (0.036)	ND (0.033)	ND (0.029)	0.052	ND (0.021)	0.033	0.12	ND (0.039)	ND (0.04)	0.045	ND (0.038)	ND (0.031)	ND (0.021)	ND (0.025)
Benzene	2	ND (0.00066)	ND (0.0017)	ND (0.0007)	ND (0.00064)	ND (0.0013)	ND (0.00099)	ND (0.00092)	ND (0.00081)	ND (0.00071)	ND (0.00058)	ND (0.00083)	ND (0.0021)	ND (0.0011)	ND (0.0011)	ND (0.00072)	ND (0.0011)	ND (0.00086)	ND (0.00059)	ND (0.00069)
Ethylbenzene	40	ND (0.00066)	ND (0.0017)	ND (0.0007)	ND (0.00064)	ND (0.0013)	ND (0.00099)	ND (0.00092)	ND (0.00081)	ND (0.00071)	ND (0.00058)	ND (0.00083)	ND (0.0021)	ND (0.0011)	ND (0.0011)	ND (0.00072)	ND (0.0011)	ND (0.00086)	ND (0.00059)	ND (0.00069)
Isopropylbenzene (Cumene)	1000	ND (0.00066)	ND (0.0017)	ND (0.0007)	ND (0.00064)	ND (0.0013)	ND (0.00099)	ND (0.00092)	ND (0.00081)	ND (0.00071)	ND (0.00058)	ND (0.00083)	ND (0.0021)	ND (0.0011)	ND (0.0011)	ND (0.00072)	ND (0.0011)	ND (0.00086)	ND (0.00059)	ND (0.00069)
Naphthalene	4	ND (0.0026)	ND (0.0069)	ND (0.0028)	ND (0.0025)	ND (0.0053)	ND (0.004)	ND (0.0037)	ND (0.0032)	ND (0.0028)	ND (0.0023)	ND (0.0033)	ND (0.0083)	ND (0.0043)	ND (0.0045)	ND (0.0029)	ND (0.0043)	ND (0.0034)	ND (0.0024)	ND (0.0027)
n-Butylbenzene	NA 100	ND (0.00066)	ND (0.0017)	ND (0.0007)	ND (0.00064)	ND (0.0013)	ND (0.00099)	ND (0.00092)	ND (0.00081)	ND (0.00071)	ND (0.00058)	ND (0.00083)	ND (0.0021)	ND (0.0011)	ND (0.0011)	ND (0.00072)	ND (0.0011)	ND (0.00086)	ND (0.00059)	ND (0.00069)
n-Propylbenzene Toluene	100 30	ND (0.00066) ND (0.00098)	ND (0.0017) ND (0.0026)	ND (0.0007) ND (0.001)	ND (0.00064) ND (0.00095)	ND (0.0013) ND (0.002)	ND (0.00099) ND (0.0015)	ND (0.00092)	ND (0.00081) ND (0.0012)	ND (0.00071)	ND (0.00058) ND (0.00086)	ND (0.00083) ND (0.0012)	ND (0.0021) ND (0.0031)	ND (0.0011) ND (0.0016)	ND (0.0011) ND (0.0017)	ND (0.00072) ND (0.0011)	ND (0.0011) 0.0022	ND (0.00086) ND (0.0013)	ND (0.00059) ND (0.00089)	ND (0.00069) ND (0.001)
Trichlorofluoromethane (CFC-11)	30 1000	ND (0.00098) ND (0.0026)	ND (0.0026) ND (0.0069)	ND (0.001) ND (0.0028)	ND (0.00095) ND (0.0025)	ND (0.002) ND (0.0053)	ND (0.0015) ND (0.004)	ND (0.0014) ND (0.0037)	ND (0.0012) ND (0.0032)	ND (0.0011) ND (0.0028)	ND (0.00086) ND (0.0023)	ND (0.0012) ND (0.0033)	ND (0.0031) ND (0.0083)	ND (0.0016) ND (0.0043)	ND (0.0017) ND (0.0045)	ND (0.0011) ND (0.0029)	0.0022 ND (0.0043)	ND (0.0013) ND (0.0034)	ND (0.00089) ND (0.0024)	ND (0.001) ND (0.0027)
Xylene (total)	100	ND (0.0020)	ND (0.0035)	ND (0.0028)	ND (0.0023) ND (0.0013)	ND (0.0035)	ND (0.004)	ND (0.0037) ND (0.0018)	ND (0.0032)	ND (0.0028)	ND (0.0023)	ND (0.0033) ND (0.0016)	ND (0.0042)	ND (0.0043)	ND (0.0022)	ND (0.0029)	ND (0.0043) ND (0.0021)	ND (0.0034)	ND (0.0024)	ND (0.0027) ND (0.0014)
SUM of Volatile Organic Compounds	NA	0.027	0.086	ND (0.0014)	ND (0.0013)	ND (0.0020)	ND (0.002)	ND (0.0018)	ND (0.0010)	0.052	ND (0.0012)	0.033	0.142	ND (0.0022)	ND (0.0022)	0.053	0.0022	ND (0.0017)	ND (0.0012)	ND (0.0014)
· ·	101											0.000	V-1-1-							
Semi-Volatile Organic Compounds (mg/kg)	0.7	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.33)	ND (0.36)	ND (0.22)	ND (0.33)	ND (0.22)	ND (0.33)	ND (0.22)		ND (0.22)	ND (0.22)	ND (0.24)	ND (0.22)	ND (0.22)	ND (0.3E)	ND (0.3E)
2-Methylnaphthalene Acenaphthene	0.7	ND (0.22) ND (0.15)	ND (0.33) ND (0.22)	ND (0.22) 0.16	ND (0.21) ND (0.14)	ND (0.32) ND (0.21)	ND (0.26) ND (0.18)	ND (0.23) 0.57	ND (0.22) ND (0.15)	ND (0.22) 0.8	ND (0.22) ND (0.15)	ND (0.23) ND (0.16)	3.8	ND (0.23) ND (0.15)	ND (0.22) 0.2	ND (0.24) ND (0.16)	ND (0.23) 0.62	ND (0.23) ND (0.16)	ND (0.25) ND (0.17)	ND (0.25) ND (0.17)
Acenaphthylene	1	ND (0.15)	ND (0.22)	ND (0.14)	ND (0.14) ND (0.14)	ND (0.21)	ND (0.18)	ND (0.16)	ND (0.15)	0.8	ND (0.15) ND (0.15)	ND (0.16)	2	ND (0.13) ND (0.15)	0.19	ND (0.16)	0.02	ND (0.16)	ND (0.17) ND (0.17)	ND (0.17) ND (0.17)
Anthracene	1000	ND (0.11)	ND (0.16)	0.66	ND (0.11)	ND (0.16)	ND (0.13)	1.3	ND (0.11)	2.1	ND (0.11)	ND (0.12)	6.7	ND (0.11)	0.62	ND (0.12)	1.4	ND (0.12)	ND (0.13)	ND (0.13)
Benzo(a)anthracene	7	0.14	ND (0.16)	3.9	0.16	ND (0.16)	ND (0.13)	3.2	ND (0.11)	6.1	0.24	ND (0.12)	13	ND (0.11)	1.8	ND (0.12)	5.4	ND (0.12)	ND (0.13)	ND (0.13)
Benzo(a)pyrene	2	ND (0.15)	ND (0.22)	3.8	0.18	ND (0.21)	ND (0.18)	3.2	ND (0.15)	5	0.24	ND (0.16)	11	ND (0.15)	1.4	ND (0.16)	4.8	ND (0.16)	ND (0.17)	ND (0.17)
Benzo(b)fluoranthene	7	0.17	ND (0.16)	5.9	0.28	ND (0.16)	ND (0.13)	4	ND (0.11)	6.9	0.3	ND (0.12)	14	ND (0.11)	1.9	ND (0.12)	6.4	ND (0.12)	ND (0.13)	ND (0.13)
Benzo(g,h,i)perylene	1000	ND (0.15)	ND (0.22)	2.7	0.14	ND (0.21)	ND (0.18)	1.6	ND (0.15)	3	ND (0.15)	ND (0.16)	7.3	ND (0.15)	0.87	ND (0.16)	2.8	ND (0.16)	ND (0.17)	ND (0.17)
Benzo(k)fluoranthene	70	ND (0.11)	ND (0.16)	2.1	ND (0.11)	ND (0.16)	ND (0.13)	1.4	ND (0.11)	2.2	ND (0.11)	ND (0.12)	5.1	ND (0.11)	0.67	ND (0.12)	2.3	ND (0.12)	ND (0.13)	ND (0.13)
bis(2-Ethylhexyl)phthalate	90	ND (0.18)	ND (0.27)	ND (0.18)	ND (0.18)	ND (0.26)	ND (0.22)	ND (0.19)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.2)	ND (0.18)	ND (0.19)	ND (0.18)	ND (0.2)	ND (0.19)	ND (0.19)	ND (0.21)	ND (0.21)
Chrysene	70	0.14	ND (0.16)	5.1	0.23	ND (0.16)	ND (0.13)	3.1	ND (0.11)	5.8	0.23	ND (0.12)	11	ND (0.11)	1.8	ND (0.12)	5.2	ND (0.12)	ND (0.13)	ND (0.13)
Dibenz(a,h)anthracene	0.7	ND (0.11)	ND (0.16)	0.66	ND (0.11)	ND (0.16)	ND (0.13)	0.43	ND (0.11)	0.84	ND (0.11)	ND (0.12)	1.8	ND (0.11)	0.23	ND (0.12)	0.74	ND (0.12)	ND (0.13)	ND (0.13)
Dibenzofuran	100	ND (0.18)	ND (0.27)	ND (0.18)	ND (0.18)	ND (0.26)	ND (0.22)	0.44	ND (0.18)	0.5	ND (0.18)	ND (0.2)	2.4	ND (0.19)	ND (0.18)	ND (0.2)	0.46	ND (0.19)	ND (0.21)	ND (0.21)
Fluoranthene	1000	0.34	0.17	7.6	0.56	ND (0.16)	ND (0.13)	7.1	ND (0.11)	11	0.54	ND (0.12)	30	0.13	3.7	ND (0.12)	12	ND (0.12)	ND (0.13)	ND (0.13)
Fluorene	1000	ND (0.18)	ND (0.27)	0.2 3.2	ND (0.18)	ND (0.26)	ND (0.22)	0.62 2	ND (0.18)	0.83 3.5	ND (0.18)	ND (0.2)	4.3 6.7	ND (0.19)	0.22 1	ND (0.2) ND (0.16)	0.47	ND (0.19)	ND (0.21)	ND (0.21)
Indeno(1,2,3-cd)pyrene Naphthalene	/	ND (0.15) ND (0.18)	ND (0.22) ND (0.27)	ND (0.18)	0.15 ND (0.18)	ND (0.21) ND (0.26)	ND (0.18) ND (0.22)	0.4	ND (0.15) ND (0.18)	0.44	0.15 ND (0.18)	ND (0.16) ND (0.2)	2	ND (0.15) ND (0.19)	ND (0.18)	ND (0.16) ND (0.2)	3.3 0.33	ND (0.16) ND (0.19)	ND (0.17) ND (0.21)	ND (0.17) ND (0.21)
Phenanthrene	10	0.24	ND (0.16)	4.3	0.27	ND (0.16)	ND (0.22)	5.9	ND (0.11)	6.5	0.33	ND (0.12)	24	ND (0.13) ND (0.11)	2.6	ND (0.2)	6.9	ND (0.13)	ND (0.21) ND (0.13)	ND (0.13)
Pyrene	1000	0.31	ND (0.16)	6	0.42	ND (0.16)	ND (0.13) ND (0.13)	5.9	ND (0.11)	9.2	0.48	ND (0.12) ND (0.12)	26	0.12	3.1	ND (0.12) ND (0.12)	9.8	ND (0.12) ND (0.12)	ND (0.13) ND (0.13)	ND (0.13)
SUM of Semi-Volatile Organic Compounds	NA	1.34	0.17	46.28	2.39	ND	ND	41.16	ND	64.91	2.51	ND	172.1	0.25	20.3	ND	63.18	ND	ND	ND
Total Petroleum Hydrocarbons (mg/kg)			-					-												
Petroleum hydrocarbons	1000	ND (36)	ND (53.8)	410	ND (34.8)	ND (51.3)	ND (44.5)	211	ND (35)	644	ND (37.2)	39.9	1300	ND (36.5)	322	ND (39)	348	ND (39.8)	ND (41.9)	ND (41)
·	1000	112 (30)	115 (55.0)	110	115 (5 1.5)	115 (52.5)			115 (33)	0	115 (37.2)	33.3	1555	112 (30.3)	322	112 (33)	3.0	112 (55.6)	115 (12.5)	115 (12)
EPH (mg/kg)	1000												202							
MADEP C11-C22 Aromatic Hydrocarbons, Adjusted MADEP C11-C22 Aromatic Hydrocarbons, Unadjusted	1000 NA	-	-	_	-	-	1 -	-	-	-	-	-	203 330	-	-	-	-	-	-	-
MADEP C11-C22 Aromatic Hydrocarbons, Unadjusted MADEP C19-C36 Aliphatic Hydrocarbons	NA 3000		_	-	-	-							330 25.2							
MADEP C19-C38 Aliphatic Hydrocarbons	1000		_		-	-		-			-		25.2 ND (14.1)	-	_			_	-	
, ,	1000	1				<u> </u>	1						(17.1)					1		
Inorganic Compounds (mg/kg)	20	ND (2.2)	ND (2.2)	ND (2.2)	ND (2.11)	ND /2 4)	ND (3.50)	ND (2.24)	ND (2.2)	ND (2.16)	ND (2.24)	ND (2.36)	ND (2.24)	ND (2.26)	ND (2.27)	ND (2.22)	2.47	ND (2.35)	ND (2.40)	ND (2.47)
Antimony Arsenic	20 20	ND (2.2) 2.92	ND (3.3) 7.48	ND (2.2) 4.9	ND (2.11) 2.56	ND (3.1) 7.25	ND (2.59) 7.42	ND (2.31) 7.87	ND (2.2) 3.74	ND (2.16) 7.12	ND (2.21) 3.24	ND (2.36) 4.45	ND (2.24) 5.11	ND (2.26) 3.14	ND (2.27) 6.97	ND (2.33) 4.38	2.47 8.17	ND (2.35) 8.25	ND (2.49) 9.11	ND (2.47) 10.9
Barium	1000	33.5	29.2	55.8	2.56	30	64.2	83.8	3.74 41.7	61	38.7	28.9	47.2	34.2	84.3	4.38 39.3	112	68.7	9.11 87.3	83.2
Beryllium	90	0.273	0.436	ND (0.22)	0.244	0.582	0.621	0.356	0.33	0.286	0.234	0.628	0.291	0.444	0.327	0.345	0.365	0.664	0.797	0.806
Cadmium	70	0.855	0.693	0.806	0.682	0.644	ND (0.517)	ND (0.463)	ND (0.44)	1.03	0.783	ND (0.472)	ND (0.447)	ND (0.452)	ND (0.455)	ND (0.466)	ND (0.45)	ND (0.471)	ND (0.498)	ND (0.494)
Chromium	100	14.2	25.8	12.5	11.4	31	33.5	12.1	15.1	17.5	13.8	13.8	22.7	15.7	12.7	15.1	19	34	45.7	41.2
Lead	200	17.4	8.59	80.7	9.36	10.7	7.2	266	44.1	115	19.6	16.4	101	6.99	242	33.4	412	10.9	10.4	10.8
Mercury	20	ND (0.071)	ND (0.104)	0.144	ND (0.069)	ND (0.101)	ND (0.085)	1.71	0.072	0.273	ND (0.07)	ND (0.075)	0.209	ND (0.072)	0.906	0.105	0.89	ND (0.075)	ND (0.08)	ND (0.084)
Nickel	600	10.7	13.8	10.6	9.12	19.2	22.6	12.5	10.8	14.9	11.9	9.8	43.3	12.1	12.2	11.5	17.6	25	30.5	29.9
Selenium	400	ND (2.2)	ND (3.3)	ND (2.2)	ND (2.11)	ND (3.1)	ND (2.59)	ND (2.31)	ND (2.2)	ND (2.16)	ND (2.21)	ND (2.36)	ND (2.24)	ND (2.26)	ND (2.27)	ND (2.33)	ND (2.25)	ND (2.35)	ND (2.49)	ND (2.47)
Silver	100	ND (0.441)	ND (0.66)	ND (0.441)	ND (0.421)	ND (0.619)	ND (0.517)	ND (0.463)	ND (0.44)	ND (0.433)	ND (0.442)	ND (0.472)	ND (0.447)	ND (0.452)	ND (0.455)	ND (0.466)	ND (0.45)	ND (0.471)	ND (0.498)	ND (0.494)
Thallium	8	ND (2.2)	ND (3.3)	ND (2.2)	ND (2.11)	ND (3.1)	ND (2.59)	ND (2.31)	ND (2.2)	ND (2.16)	ND (2.21)	ND (2.36)	ND (2.24)	ND (2.26)	ND (2.27)	ND (2.33)	ND (2.25)	ND (2.35)	ND (2.49)	ND (2.47)
Vanadium	400	25.6	34.2	20.7	21.8	35.4	40.6	21.6	23.7	27.8	22.5	16.1	22.6	27.6	20	24.8	23.9	45.6	51.4	50.8
Zinc	1000	40.3	34.7	210	32.6	51.6	51.9	183	55.7	88.1	91.2	30.6	125	40.2	212	37.8	316	63.3	66.3	64.6
TCLP Inorganic Compounds (mg/L)							1													
Lead	NA	-	-	-	-	-	-	ND (0.5)	-	ND (0.5)	-	-	ND (0.5)	<u> </u>	ND (0.5)	-	ND (0.5)	-	-	-
																		· · · · · · · · · · · · · · · · · · ·		

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

Parcel	Regulatory Criteria										Parcel B-3									
Precharacterization Grid		Į.	\ 5		А	۸6		E	34		B5		E	36	C	4		C	5	
Location Name		A5-TP	A5-TP	A6 (OW)	A6 (OW)	A6 (OW)	A6 (OW)	B4	B4	B5-TP	B5-TP	B5-TP	В6	В6	C4	C4	C5	C5	C5	C5
Sample Name	MCP	TP-A5_5-6.5	TP-A5_6.5-8.5	A6_0-5	A6_5-9	A6_10-15	A6_15-20	B4_0-5	B4_5-7	TP-B5_0-4.5	TP-B5_4.5-7.0	TP-B5_7-9	B6_0-5	B6_5-10	C4_0-5	C4_5-12	C5_0-6	C5_6-10	C5_10-15	C5_15-19
Sample Date	Reportable	08/14/2017	08/14/2017	08/14/2017	08/14/2017	08/15/2017	08/15/2017	08/09/2017	08/09/2017	08/14/2017	08/14/2017	08/14/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017
	Concentrations												L1727786-01							
	RCS-1							L1727786-03		L1728308-04			L1728249-01		L1727786-09		L1727786-05			
Lab Sample ID	2014	L1728308-02	L1728308-03	L1728305-01	L1728305-02	L1728393-01	L1728393-02	L1728249-02	L1727786-04	L1728602-02	L1728308-05	L1728308-06	L1728906-01	L1727786-02	L1728249-04	L1727786-10	L1728249-03	L1727786-06	L1727786-07	L1727786-08
Sample Depth (bgs)	2014	5 - 6.5 (ft)	6.5 - 8.5 (ft)	0 - 5 (ft)	5 - 9 (ft)	10 - 15 (ft)	15 - 20 (ft)	0 - 5 (ft)	5 - 7 (ft)	0 - 4.5 (ft)	4.5 - 7 (ft)	7 - 9 (ft)	0 - 5 (ft)	5 - 10 (ft)	0 - 5 (ft)	5 - 12 (ft)	0 - 6 (ft)	6 - 10 (ft)	10 - 15 (ft)	15 - 19 (ft)
Soil Description		FILL	ORGANICS	FILL	FILL	ORGANICS	CLAY	FILL	FILL	FILL	FILL	ORGANICS	FILL	FILL	FILL	FILL	FILL	CLAY	CLAY	CLAY
Soil Disposal Classification		I-3	I-2	II-1	I-3	I-2	I-2	II-1	I-3	II-1	I-3	I-2	II-3	I-3	II-1	I-3	II-1	I-2	I-2	I-2
PCBs (mg/kg)																				
Aroclor-1242 (PCB-1242)	1	ND (0.0366)	ND (0.0552)	ND (0.0363)	ND (0.0352)	ND (0.0513)	ND (0.0441)	ND (0.0386)	ND (0.0357)	ND (0.0358)	ND (0.0357)	ND (0.0392)	ND (0.0362)	ND (0.0379)	ND (0.0363)	ND (0.0387)	ND (0.0368)	ND (0.0378)	ND (0.041)	ND (0.0406)
Aroclor-1248 (PCB-1248)	1	ND (0.0366)	ND (0.0552)	ND (0.0363)	ND (0.0352)	ND (0.0513)	ND (0.0441)	ND (0.0386)	ND (0.0357)	ND (0.0358)	ND (0.0357)	ND (0.0392)	ND (0.0362)	ND (0.0379)	ND (0.0363)	ND (0.0387)	ND (0.0368)	ND (0.0378)	ND (0.041)	ND (0.0406)
Aroclor-1254 (PCB-1254)	1	ND (0.0366)	ND (0.0552)	ND (0.0363)	ND (0.0352)	ND (0.0513)	ND (0.0441)	ND (0.0386)	ND (0.0357)	ND (0.0358)	ND (0.0357)	ND (0.0392)	ND (0.0362)	ND (0.0379)	ND (0.0363)	ND (0.0387)	0.0405	ND (0.0378)	ND (0.041)	ND (0.0406)
Aroclor-1260 (PCB-1260)	1	ND (0.0366)	ND (0.0552)	ND (0.0363)	ND (0.0352)	ND (0.0513)	ND (0.0441)	ND (0.0386)	ND (0.0357)	ND (0.0358)	ND (0.0357)	ND (0.0392)	0.0463	ND (0.0379)	ND (0.0363)	ND (0.0387)	ND (0.0368)	ND (0.0378)	ND (0.041)	ND (0.0406)
SUM of PCBs	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0463	ND	ND	ND	0.0405	ND	ND	ND
Other																				
Total Solids (%)	NA	88.6	60	90.4	91.5	62	74.1	83.9	89.5	89.5	89.4	84	89.2	87.4	87.9	82.9	86.9	83.4	78.2	77.5
Reactive Cyanide (mg/kg)	NA	ND (125)	ND (125)	ND (130)	ND (130)	ND (130)	ND (130)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)
Reactive Sulfide (mg/kg)	NA	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)
Ignitability (Flashpoint)	NA	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
pH (lab) (pH units)	NA	7	7.8	8.4	7.6	8.1	8	8	7.6	7.6	7.6	7.9	8	6.5	8	7.8	8.1	8	7.7	7.6
Conductivity (umhos/cm)	NA	48	340	54	29	550	610	48	38	98	53	150	78	19	86	95	73	100	240	460
VPH (mg/kg)																				
MADEP C5-C8 Aliphatic Hydrocarbons, Adjusted	100	-	-	-	-	-	-	-	-	-	-	-	ND (6.8)	-	-	-	-	-	-	-
MADEP C5-C8 Aliphatic Hydrocarbons, Unadjusted	NA	-	-	-	-	-	-	-	-	-	-	-	ND (6.8)	-	-	-	-	-	-	-
MADEP C9-C10 Aromatic Hydrocarbons	100	-	-	-	-	-	-	-	-	-	-	-	ND (6.8)	-	-	-	-	-	-	-
MADEP C9-C12 Aliphatic Hydrocarbons, Adjusted	1000	-	-	-	-	-	-	-	-	-	-	-	ND (6.8)	-	-	-	-	-	-	-
MADEP C9-C12 Aliphatic Hydrocarbons, Unadjusted	NA	-	-	-	-	-	-	-	-	-	-	-	ND (6.8)	-	-	-	-	-	-	-

ABBREVIATIONS AND NOTES:

-: Not Analyzed

NA: Not Applicable

ND (2.5): Not detected, number in parentheses is the laboratory detection limit

NI: Not Ignitable

- VOC, SVOC and PCB analytes detected in at least one sample are reported herein. For a complete li

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

FILE NO. 1307/1-002														
Parcel	Regulatory Criteria							Parcel B-3					1	
Precharacterization Grid		ļ	C6	1			04	1)5		06		E4
Location Name		C6	C6	C6	D4	D4	D4	D4	D5	D5	D6-TP	D6-TP	E4-TP	E4-TP
Sample Name	MCP	C6_0-5	C6_10-14	C6_15-19	D4_0-5	D4_5-10.5	D4_10.5-15	D4_15-20	D5_0-5.4	D5_5.4-7.5	TP-D6_0-5	TP-D6_5-6.5	TP-E4_0-5	TP-E4_5-9
Sample Date	Reportable	08/24/2017	08/24/2017	08/24/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/14/2017	08/14/2017	08/14/2017	08/14/2017
	Concentrations													
					L1727786-13	L1727786-14			L1727786-11		L1728308-07	L1728308-08		
Lab Sample ID	RCS-1	L1729903-01	L1729903-02	L1729903-03	L1728249-06	L1728249-07	L1727786-15	L1727786-16	L1728249-05	L1727786-12	L1728602-03	L1728602-04	L1728308-09	L1728308-10
Sample Depth (bgs)	2014	0 - 5 (ft)	10 - 14 (ft)	15 - 19 (ft)	0 - 5 (ft)	5 - 10.5 (ft)	10.5 - 15 (ft)	15 - 20 (ft)	0 - 5.4 (ft)	5.4 - 7.5 (ft)	0 - 5 (ft)	5 - 6.5 (ft)	0 - 5 (ft)	5 - 9 (ft)
Soil Description		FILL	CLAY	CLAY	FILL	FILL	CLAY	CLAY	FILL	FILL	FILL	FILL	FILL	FILL
Soil Disposal Classification		II-1	I-2	I-2	II-3	II-1	I-2	I-2	II-1	I-3	II-1	II-1	II-4	I-3
										_				
Volatile Organic Compounds (mg/kg)														
1,2,4-Trimethylbenzene	1000	ND (0.0034)	ND (0.0034)	ND (0.0034)	ND (0.0031)	ND (0.004)	ND (0.0035)	ND (0.0028)	ND (0.0032)	ND (0.0027)	ND (0.0028)	ND (0.0047)	ND (0.0025)	ND (0.0028)
1,3,5-Trimethylbenzene	10	ND (0.0034)	ND (0.0034)	ND (0.0034)	ND (0.0031)	ND (0.004)	ND (0.0035)	ND (0.0028)	ND (0.0032)	ND (0.0027)	ND (0.0028)	ND (0.0047)	ND (0.0025)	ND (0.0028)
2-Butanone (Methyl Ethyl Ketone)	4	ND (0.0086)	ND (0.0086)	ND (0.0086)	ND (0.0078)	ND (0.01)	ND (0.0088)	ND (0.0069)	ND (0.008)	ND (0.0067)	ND (0.0069)	ND (0.012)	ND (0.0063)	ND (0.007)
Acetone	6	ND (0.031)	ND (0.031)	ND (0.031)	ND (0.028)	ND (0.036)	0.054	ND (0.025)	ND (0.029)	ND (0.024)	ND (0.025)	ND (0.042)	0.039	ND (0.025)
Benzene	2	ND (0.00086)	ND (0.00086)	ND (0.0086)	ND (0.028)	ND (0.001)	ND (0.00088)	ND (0.0069)	ND (0.023)	ND (0.00067)	ND (0.0069)	ND (0.0012)	ND (0.00063)	ND (0.0007)
Ethylbenzene	40		ND (0.00086)	ND (0.00086)	ND (0.00078)		ND (0.00088)						ND (0.00063)	
· ·		ND (0.00086)				ND (0.001)		ND (0.00069)	ND (0.0008)	ND (0.00067)	ND (0.00069)	ND (0.0012)		ND (0.0007)
Isopropylbenzene (Cumene)	1000	ND (0.00086)	ND (0.00086)	ND (0.00086)	ND (0.00078)	ND (0.001)	ND (0.00088)	ND (0.00069)	ND (0.0008)	ND (0.00067)	ND (0.00069)	ND (0.0012)	ND (0.00063)	ND (0.0007)
Naphthalene	4	ND (0.0034)	ND (0.0034)	ND (0.0034)	0.035	ND (0.004)	ND (0.0035)	ND (0.0028)	ND (0.0032)	ND (0.0027)	ND (0.0028)	ND (0.0047)	ND (0.0025)	ND (0.0028)
n-Butylbenzene	NA	ND (0.00086)	ND (0.00086)	ND (0.00086)	ND (0.00078)	ND (0.001)	ND (0.00088)	ND (0.00069)	ND (0.0008)	ND (0.00067)	ND (0.00069)	ND (0.0012)	ND (0.00063)	ND (0.0007)
n-Propylbenzene	100	ND (0.00086)	ND (0.00086)	ND (0.00086)	ND (0.00078)	ND (0.001)	ND (0.00088)	ND (0.00069)	ND (0.0008)	ND (0.00067)	ND (0.00069)	ND (0.0012)	ND (0.00063)	ND (0.0007)
Toluene	30	ND (0.0013)	ND (0.0013)	ND (0.0013)	ND (0.0012)	ND (0.0015)	ND (0.0013)	ND (0.001)	ND (0.0012)	ND (0.001)	ND (0.001)	ND (0.0018)	ND (0.00095)	ND (0.001)
Trichlorofluoromethane (CFC-11)	1000	ND (0.0034)	ND (0.0034)	ND (0.0034)	ND (0.0031)	ND (0.004)	ND (0.0035)	ND (0.0028)	ND (0.0032)	ND (0.0027)	ND (0.0028)	ND (0.0047)	ND (0.0025)	ND (0.0028)
Xylene (total)	100	ND (0.0017)	ND (0.0017)	ND (0.0017)	ND (0.0016)	ND (0.002)	ND (0.0018)	ND (0.0014)	ND (0.0016)	ND (0.0013)	ND (0.0014)	ND (0.0023)	ND (0.0013)	ND (0.0014)
SUM of Volatile Organic Compounds	NA	ND	ND	ND	0.035	ND	0.054	ND	ND	ND	ND	ND	0.039	ND
Semi-Volatile Organic Compounds (mg/kg)		1					1					1	1	
2-Methylnaphthalene	0.7	ND (0.21)	ND (0.25)	ND (0.27)	0.48	ND (0.23)	ND (0.27)	ND (0.26)	0.28	ND (0.22)	ND (0.22)	0.28	0.22	ND (0.24)
1	4										1	1.2		
Acenaphthylana		0.24 ND (0.14)	ND (0.16)	ND (0.18)	2.1	0.82 ND (0.16)	ND (0.18)	ND (0.18)	0.99	ND (0.14)	0.43		0.57	ND (0.16)
Acenaphthylene	1	ND (0.14)	ND (0.16)	ND (0.18)	0.32	ND (0.16)	ND (0.18)	ND (0.18)	0.27	ND (0.14)	0.22	ND (0.17)	0.23	ND (0.16)
Anthracene	1000	0.78	ND (0.12)	ND (0.13)	4.1	2.3	ND (0.13)	ND (0.13)	2.4	ND (0.11)	1.1	2	1.7	0.14
Benzo(a)anthracene	7	2.2	ND (0.12)	ND (0.13)	10	4.1	ND (0.13)	ND (0.13)	6.7	ND (0.11)	3.4	4.5	4.8	0.43
Benzo(a)pyrene	2	1.7	ND (0.16)	ND (0.18)	8	3	ND (0.18)	ND (0.18)	4.9	ND (0.14)	2.7	3.3	3.7	0.42
Benzo(b)fluoranthene	7	2.2	ND (0.12)	ND (0.13)	11	4.1	ND (0.13)	ND (0.13)	6.5	ND (0.11)	3.7	4.5	5.1	0.53
Benzo(g,h,i)perylene	1000	1.1	ND (0.16)	ND (0.18)	4.4	1.4	ND (0.18)	ND (0.18)	2.8	ND (0.14)	1.6	1.9	2.3	0.24
Benzo(k)fluoranthene	70	0.81	ND (0.12)	ND (0.13)	3.9	1.5	ND (0.13)	ND (0.13)	2.5	ND (0.11)	1.3	1.6	1.7	0.2
bis(2-Ethylhexyl)phthalate	90	ND (0.18)	ND (0.21)	ND (0.22)	ND (0.18)	ND (0.19)	ND (0.22)	ND (0.22)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.21)	ND (0.19)	ND (0.2)
Chrysene	70	2.1	ND (0.12)	ND (0.13)	9.6	3.5	ND (0.13)	ND (0.13)	6	ND (0.11)	3.4	4.6	4.5	0.41
Dibenz(a,h)anthracene	0.7	0.3	ND (0.12)	ND (0.13)	1.3	0.46	ND (0.13)	ND (0.13)	0.85	ND (0.11)	0.47	0.51	0.68	ND (0.12)
Dibenzofuran	100	ND (0.18)	ND (0.21)	ND (0.22)	1.1	0.65	ND (0.22)	ND (0.22)	0.61	ND (0.18)	0.24	0.65	0.41	ND (0.2)
Fluoranthene	1000	4.6	ND (0.12)	ND (0.13)	22	8.4	ND (0.13)	ND (0.13)	12	ND (0.11)	6.7	8.9	7.5	0.92
Fluorene	1000	0.26	ND (0.21)	ND (0.22)	1.9	1.2	ND (0.22)	ND (0.22)	1	ND (0.18)	0.42	1.1	0.67	ND (0.2)
Indeno(1,2,3-cd)pyrene	7	1.2	ND (0.16)	ND (0.22) ND (0.18)	5.5	1.8	ND (0.18)	ND (0.22)	3.5	ND (0.14)	1.9	2.1	2.7	0.28
Naphthalene	4	ND (0.18)	ND (0.10) ND (0.21)	ND (0.18) ND (0.22)	0.8	0.38	ND (0.18) ND (0.22)	ND (0.18) ND (0.22)	0.49	ND (0.14) ND (0.18)	0.18	0.34	0.28	ND (0.2)
Phenanthrene	10	2.9	ND (0.21) ND (0.12)	ND (0.22) ND (0.13)	16	7.1	ND (0.22) ND (0.13)	ND (0.22) ND (0.13)	8.6	ND (0.18) ND (0.11)	5	9.1	6.3	0.59
Pyrene	1000	3.8	ND (0.12) ND (0.12)	ND (0.13) ND (0.13)	18	6.3	ND (0.13) ND (0.13)	ND (0.13) ND (0.13)	8.6 10	ND (0.11) ND (0.11)	6.1	8.1	6.2	0.59
SUM of Semi-Volatile Organic Compounds	NA	24.19	ND (0.12)	ND (0.13)	120.5	47.01	ND (0.13)	ND (0.13)	70.39	ND (0.11)	38.86	54.68	49.56	4.91
· ·	IVA	24.17	IAD	IND	120.3	47.01	ND	IND	70.33	IND	30.00	J4.00	49.30	4.71
Total Petroleum Hydrocarbons (mg/kg)		1					1					1	1	
Petroleum hydrocarbons	1000	179	ND (41.3)	ND (42.8)	785	188	ND (43.7)	ND (42.6)	536	ND (34.7)	407	408	1400	235
EPH (mg/kg)		1					1					1	1	
MADEP C11-C22 Aromatic Hydrocarbons, Adjusted	1000	-	-	-	-	_	-	-	-	_	-	-	_	_
MADEP C11-C22 Aromatic Hydrocarbons, Unadjusted	NA	_	_	_	_	_	_	_	_	_	_	_	_	_
MADEP C11-C22 Aromatic Hydrocarbons, ornadjusted	3000		-	_	_	-	-		-	_	_	-		
MADEP C19-C30 Aliphatic Hydrocarbons	1000		-		-	_			-		-	1 -	1 -	
	1000	 	-		_	-	 	-	<u> </u>	-	_	-	-	<u> </u>
Inorganic Compounds (mg/kg)		1					1]]	
Antimony	20	ND (2.15)	ND (2.43)	ND (2.66)	2.79	ND (2.28)	ND (2.55)	ND (2.68)	22	ND (2.17)	ND (2.16)	ND (2.51)	ND (2.2)	ND (2.36)
Arsenic	20	3.08	9.25	16.3	8.53	7.78	8.37	9.6	6.06	3.22	11.5	8.68	4.8	4.97
Barium	1000	24.1	74.7	92.4	66.9	70	63.7	87.1	54.7	29.1	57.8	82.7	56.4	49.6
Beryllium	90	ND (0.215)	0.734	0.805	0.352	0.406	0.708	0.795	0.248	0.248	ND (0.216)	0.251	0.242	0.358
Cadmium	70	ND (0.43)	0.608	0.725	ND (0.446)	ND (0.456)	ND (0.51)	ND (0.537)	ND (0.436)	ND (0.435)	0.934	1.22	1.38	0.91
Chromium	100	8.58	38.5	48.4	27.4	38.4	36.1	44.5	10.5	15	12	14.3	13.5	22.4
Lead	200	20.8	9.57	10.1	161	176	11.4	10.3	256	17	168	362	90.4	34.9
Mercury	20	ND (0.068)	ND (0.08)	ND (0.086)	0.36	0.411	ND (0.085)	ND (0.087)	0.978	0.31	0.497	0.79	0.304	0.094
Nickel	600	6.22	28.6	33.3	16.5	16.4	23.3	31.2	9.75	10.6	11.7	12.6	11.1	16.1
Selenium														
	400	ND (2.15)	ND (2.43)	ND (2.66)	ND (2.23)	ND (2.28)	ND (2.55)	ND (2.68)	ND (2.18)	ND (2.17)	ND (2.16)	ND (2.51)	ND (2.2)	ND (2.36)
Silver	100	ND (0.43)	ND (0.486)	ND (0.533)	ND (0.446)	ND (0.456)	ND (0.51)	ND (0.537)	ND (0.436)	ND (0.435)	ND (0.432)	ND (0.502)	ND (0.441)	ND (0.471)
Thallium	8	ND (2.15)	ND (2.43)	ND (2.66)	ND (2.23)	ND (2.28)	ND (2.55)	ND (2.68)	ND (2.18)	ND (2.17)	ND (2.16)	ND (2.51)	ND (2.2)	ND (2.36)
Vanadium 	400	11.5	48.3	57.2	26	24	44.3	57.6	14	19.9	17.9	20	22.7	30.6
Zinc	1000	38.1	68.4	73.4	141	322	52.7	71.5	129	36.4	151	216	146	61.6
TCLP Inorganic Compounds (mg/L)		1					1					1	1	
Lead	NA	-	-	-	ND (0.5)	ND (0.5)	-	-	ND (0.5)	-	ND (0.5)	ND (0.5)	-	-
,							•						•	

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

Parcel	Regulatory Criteria							Parcel B-3						
Precharacterization Grid			C6			C	04)5		06	E	4
Location Name		C6	C6	C6	D4	D4	D4	D4	D5	D5	D6-TP	D6-TP	E4-TP	E4-TP
Sample Name	МСР	C6_0-5	C6_10-14	C6_15-19	D4_0-5	D4_5-10.5	D4_10.5-15	D4_15-20	D5_0-5.4	D5_5.4-7.5	TP-D6_0-5	TP-D6_5-6.5	TP-E4_0-5	TP-E4_5-9
Sample Date	Reportable	08/24/2017	08/24/2017	08/24/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/14/2017	08/14/2017	08/14/2017	08/14/2017
	Concentrations													
	RCS-1				L1727786-13	L1727786-14			L1727786-11		L1728308-07	L1728308-08		
Lab Sample ID	2014	L1729903-01	L1729903-02	L1729903-03	L1728249-06	L1728249-07	L1727786-15	L1727786-16	L1728249-05	L1727786-12	L1728602-03	L1728602-04	L1728308-09	L1728308-10
Sample Depth (bgs)	2014	0 - 5 (ft)	10 - 14 (ft)	15 - 19 (ft)	0 - 5 (ft)	5 - 10.5 (ft)	10.5 - 15 (ft)	15 - 20 (ft)	0 - 5.4 (ft)	5.4 - 7.5 (ft)	0 - 5 (ft)	5 - 6.5 (ft)	0 - 5 (ft)	5 - 9 (ft)
Soil Description		FILL	CLAY	CLAY	FILL	FILL	CLAY	CLAY	FILL	FILL	FILL	FILL	FILL	FILL
Soil Disposal Classification		II-1	I-2	I-2	II-3	II-1	I-2	I-2	II-1	I-3	II-1	II-1	11-4	I-3
PCBs (mg/kg)														
Aroclor-1242 (PCB-1242)	1	ND (0.0352)	ND (0.0422)	ND (0.0453)	ND (0.0356)	ND (0.038)	ND (0.0439)	ND (0.0425)	ND (0.0365)	ND (0.0348)	ND (0.035)	ND (0.043)	1.31	ND (0.0394)
Aroclor-1248 (PCB-1248)	1	ND (0.0352)	ND (0.0422)	ND (0.0453)	ND (0.0356)	ND (0.038)	ND (0.0439)	ND (0.0425)	ND (0.0365)	ND (0.0348)	ND (0.035)	ND (0.043)	ND (0.189)	ND (0.0394)
Aroclor-1254 (PCB-1254)	1	0.0641	ND (0.0422)	ND (0.0453)	0.277	ND (0.038)	ND (0.0439)	ND (0.0425)	0.102	ND (0.0348)	ND (0.035)	ND (0.043)	1.65	ND (0.0394)
Aroclor-1260 (PCB-1260)	1	ND (0.0352)	ND (0.0422)	ND (0.0453)	0.0625	ND (0.038)	ND (0.0439)	ND (0.0425)	ND (0.0365)	ND (0.0348)	0.0646	ND (0.043)	ND (0.189)	ND (0.0394)
SUM of PCBs	1	0.0641	ND	ND	0.3395	ND	ND	ND	0.102	ND	0.0646	ND	2.96	ND
Other														
Total Solids (%)	NA	92.7	78.7	73.3	88.7	85.5	74.7	74.2	88.4	90.8	90.4	76.5	87.6	83.5
Reactive Cyanide (mg/kg)	NA	ND (130)	ND (130)	ND (130)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)
Reactive Sulfide (mg/kg)	NA	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)
Ignitability (Flashpoint)	NA	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
pH (lab) (pH units)	NA	8.9	7.7	7.9	8.2	8	7.9	8.2	8.1	8.1	8.3	8	8	7.9
Conductivity (umhos/cm)	NA	100	440	460	94	110	53	100	110	58	59	63	110	30
VPH (mg/kg)														
MADEP C5-C8 Aliphatic Hydrocarbons, Adjusted	100	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C5-C8 Aliphatic Hydrocarbons, Unadjusted	NA	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C9-C10 Aromatic Hydrocarbons	100	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C9-C12 Aliphatic Hydrocarbons, Adjusted	1000	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C9-C12 Aliphatic Hydrocarbons, Unadjusted	NA	-	-	-	-	-	-	-	-	-	-	-	-	-

ABBREVIATIONS AND NOTES:

ND (2.5): Not detected, number in parentheses is the laboratory detection limit

NI: Not Ignitable

^{-:} Not Analyzed

NA: Not Applicable

⁻ VOC, SVOC and PCB analytes detected in at least one sample are reported herein. For a complete li

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

FILE NO. 1307/1-002																				
Parcel	Regulatory Criteria							Parc	el B-3									Lot 5		
Precharacterization Grid			E	5				Eθ	õ				F	4			E1			3
Location Name		E5	E5	E5	E5	E6	E6	E6	E6	E6	E6	F4	F4	F4	F4	E1 (OW)	E1 (OW)	E1 (OW)	E3	E3
Sample Name	МСР	E5_0-5	E5_5-12.5	E5_12.5-15	E5_20-25	E6_0-5	E6_5-8.5	E6_10-15	E6_15-20	E6_20-24	E6_30-34	F4_0-5	F4_5-10	F4_10-15	F4_15-20	E1_0-3	E1_3-8	E1_8-12	E3_0-3	E3_3-6.5
Sample Date		08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/21/2017	08/21/2017	08/21/2017	08/23/2017	08/23/2017	08/23/2017	08/16/2017	08/17/2017	08/17/2017	08/17/2017	08/10/2017	08/10/2017	08/10/2017	08/08/2017	08/08/2017
·	Reportable	L1727786-17																		
	Concentrations	L1728249-08				L1729260-01	L1729260-02					L1728716-01								
Lab Sample ID	RCS-1	L1728906-02	L1727786-18	L1727786-19	L1727786-20	L1729810-01	L1729810-02	L1729260-03	L1729590-01	L1729590-02	L1729590-03	L1729206-01	L1728827-01	L1728827-02	L1728827-03	L1727995-01	L1727995-02	L1727995-03	L1727453-01	L1727453-02
Sample Depth (bgs)	2014	0 - 5 (ft)	5 - 12.5 (ft)	12.5 - 15 (ft)	20 - 25 (ft)	0 - 5 (ft)	5 - 8.5 (ft)	10 - 15 (ft)	15 - 20 (ft)	20 - 24 (ft)	30 - 34 (ft)	0 - 5 (ft)	5 - 10 (ft)	10 - 15 (ft)	15 - 20 (ft)	0 - 3 (ft)	3 - 8 (ft)	8 - 12 (ft)	0 - 3 (ft)	3 - 6.5 (ft)
Soil Description		FILL	FILL	CLAY	CLAY	FILL	FILL	CLAY	CLAY	CLAY	CLAY	FILL	FILL	ORGANIC	CLAY	FILL	FILL	FILL	FILL	FILL
Soil Disposal Classification		II-3	I-3	I-2	I-2	II-3	I-3	I-2	I-2	I-2	I-2	11-4	I-3	I-3	I-2	II-3	II-1	I-3	II-3	II-1
Son Disposar diassineation		5				5								. 3		5			3	
Volatile Organic Compounds (mg/kg)																				
1,2,4-Trimethylbenzene	1000	ND (0.0038)	ND (0.0019)	ND (0.0029)	ND (0.0037)	ND (0.0033)	ND (0.0029)	ND (0.0038)	ND (0.0039)	ND (0.0035)	ND (0.0033)	ND (0.0032)	ND (0.0033)	ND (0.0034)	ND (0.0035)	ND (0.0028)	ND (0.0035)	ND (0.0026)	25	ND (0.0065)
1,3,5-Trimethylbenzene	1000	1				ND (0.0033)			, ,	ND (0.0035)				ND (0.0034)		ND (0.0028)	ND (0.0035)	ND (0.0026)	10	ND (0.0065)
	4	ND (0.0038)	ND (0.0019)	ND (0.0029)	ND (0.0037)		ND (0.0029)	ND (0.0038)	ND (0.0039)	, ,	ND (0.0033)	ND (0.0032)	ND (0.0033)		ND (0.0035)					
2-Butanone (Methyl Ethyl Ketone)	4	ND (0.0095)	ND (0.0047)	0.012	ND (0.0093)	ND (0.0084)	ND (0.0073)	ND (0.0096)	ND (0.0097)	ND (0.0088)	ND (0.0082)	ND (0.0081)	ND (0.0082)	ND (0.0084)	ND (0.0088)	ND (0.007)	ND (0.0088)	ND (0.0066)	ND (2.2)	ND (0.016)
Acetone	ь	ND (0.034)	0.018	0.056	ND (0.033)	ND (0.03)	ND (0.026)	ND (0.034)	ND (0.035)	ND (0.032)	ND (0.03)	ND (0.029)	ND (0.029)	ND (0.03)	ND (0.032)	ND (0.025)	ND (0.032)	ND (0.024)	ND (7.8)	ND (0.058)
Benzene	2	ND (0.00095)	ND (0.00047)	ND (0.00072)	ND (0.00093)	ND (0.00084)	ND (0.00073)	ND (0.00096)	ND (0.00097)	ND (0.00088)	ND (0.00082)	ND (0.00081)	ND (0.00082)	ND (0.00084)	ND (0.00088)	ND (0.0007)	ND (0.00088)	ND (0.00066)	ND (0.22)	ND (0.0016)
Ethylbenzene	40	ND (0.00095)	ND (0.00047)	ND (0.00072)	ND (0.00093)	ND (0.00084)	ND (0.00073)	ND (0.00096)	ND (0.00097)	ND (0.00088)	ND (0.00082)	ND (0.00081)	ND (0.00082)	ND (0.00084)	ND (0.00088)	ND (0.0007)	ND (0.00088)	ND (0.00066)	0.6	ND (0.0016)
Isopropylbenzene (Cumene)	1000	ND (0.00095)	ND (0.00047)	ND (0.00072)	ND (0.00093)	ND (0.00084)	ND (0.00073)	ND (0.00096)	ND (0.00097)	ND (0.00088)	ND (0.00082)	ND (0.00081)	ND (0.00082)	ND (0.00084)	ND (0.00088)	ND (0.0007)	ND (0.00088)	ND (0.00066)	0.49	ND (0.0016)
Naphthalene	4	ND (0.0038)	ND (0.0019)	ND (0.0029)	ND (0.0037)	ND (0.0033)	ND (0.0029)	ND (0.0038)	ND (0.0039)	ND (0.0035)	ND (0.0033)	ND (0.0032)	ND (0.0033)	ND (0.0034)	ND (0.0035)	ND (0.0028)	ND (0.0035)	ND (0.0026)	8.4	ND (0.0065)
n-Butylbenzene	NA	ND (0.00095)	ND (0.00047)	ND (0.00072)	ND (0.00093)	ND (0.00084)	ND (0.00073)	ND (0.00096)	ND (0.00097)	ND (0.00088)	ND (0.00082)	ND (0.00081)	ND (0.00082)	ND (0.00084)	ND (0.00088)	ND (0.0007)	ND (0.00088)	ND (0.00066)	0.43	ND (0.0016)
n-Propylbenzene	100	ND (0.00095)	ND (0.00047)	ND (0.00072)	ND (0.00093)	ND (0.00084)	ND (0.00073)	ND (0.00096)	ND (0.00097)	ND (0.00088)	ND (0.00082)	ND (0.00081)	ND (0.00082)	ND (0.00084)	ND (0.00088)	ND (0.0007)	ND (0.00088)	ND (0.00066)	1.2	ND (0.0016)
Toluene	30	ND (0.0014)	ND (0.0007)	ND (0.0011)	ND (0.0014)	ND (0.0012)	ND (0.0011)	ND (0.0014)	ND (0.0015)	ND (0.0013)	ND (0.0012)	ND (0.0012)	ND (0.0012)	ND (0.0013)	ND (0.0013)	ND (0.001)	ND (0.0013)	ND (0.001)	0.44	ND (0.0024)
Trichlorofluoromethane (CFC-11)	1000	ND (0.0038)	ND (0.0019)	ND (0.0029)	ND (0.0037)	0.0036	ND (0.0029)	ND (0.0038)	ND (0.0039)	ND (0.0035)	ND (0.0033)	ND (0.0032)	ND (0.0033)	ND (0.0034)	ND (0.0035)	ND (0.0028)	ND (0.0035)	ND (0.0026)	ND (0.86)	ND (0.0065)
Xylene (total)	100	ND (0.0019)	ND (0.00094)	ND (0.0014)	ND (0.0018)	ND (0.0017)	ND (0.0014)	ND (0.0019)	ND (0.0019)	ND (0.0018)	ND (0.0016)	ND (0.0016)	ND (0.0016)	ND (0.0017)	ND (0.0018)	ND (0.0014)	ND (0.0018)	ND (0.0013)	15	ND (0.0032)
SUM of Volatile Organic Compounds	NA	ND	0.018	0.068	ND	0.0036	ND	ND	ND	ND	ND	61.56	ND							
Somi Volatila Organic Compounds (mg/kg)																				
Semi-Volatile Organic Compounds (mg/kg)	0.7	ND (4.5)	ND (0.34)	ND (0.37)	ND (0.37)	0.53	ND (0.34)	ND (0.30)	ND (0.35)	ND (0.20)	ND (0.20)	ND /4 4)	ND (0.22)	ND (0.35)	ND (0.3C)	ND (4.3)	ND (0.33)	ND (0.22)	0.55	ND (0.30)
2-Methylnaphthalene	0.7	ND (4.5)	ND (0.24)	ND (0.27)	ND (0.27)	0.52	ND (0.24)	ND (0.26)	ND (0.25)	ND (0.28)	ND (0.26)	ND (1.1)	ND (0.23)	ND (0.25)	ND (0.26)	ND (4.3)	ND (0.22)	ND (0.22)	0.55 0.94	ND (0.26)
Acenaphthene	4	ND (3)	ND (0.16)	ND (0.18)	ND (0.18)	1.3	ND (0.16)	ND (0.17)	ND (0.17)	ND (0.18)	ND (0.18)	1.2	ND (0.15)	ND (0.16)	ND (0.17)	7.6	ND (0.15)	ND (0.15)		ND (0.17)
Acenaphthylene	1	ND (3)	ND (0.16)	ND (0.18)	ND (0.18)	1.2	ND (0.16)	ND (0.17)	ND (0.17)	ND (0.18)	ND (0.18)	ND (0.73)	ND (0.15)	ND (0.16)	ND (0.17)	ND (2.9)	ND (0.15)	ND (0.15)	0.26	ND (0.17)
Anthracene	1000	6.5	ND (0.12)	ND (0.13)	ND (0.13)	6.5	ND (0.12)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	3.5	ND (0.11)	ND (0.12)	ND (0.13)	22	ND (0.11)	ND (0.11)	2	ND (0.13)
Benzo(a)anthracene	7	16	ND (0.12)	ND (0.13)	ND (0.13)	13	0.12	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	9.6	ND (0.11)	ND (0.12)	ND (0.13)	33	0.38	ND (0.11)	3.2	0.21
Benzo(a)pyrene	2	12	ND (0.16)	ND (0.18)	ND (0.18)	12	ND (0.16)	ND (0.17)	ND (0.17)	ND (0.18)	ND (0.18)	7.8	ND (0.15)	ND (0.16)	ND (0.17)	30	0.43	ND (0.15)	2.9	0.19
Benzo(b)fluoranthene	7	16	ND (0.12)	ND (0.13)	ND (0.13)	15	0.15	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	11	ND (0.11)	ND (0.12)	ND (0.13)	38	0.53	ND (0.11)	3.3	0.27
Benzo(g,h,i)perylene	1000	7.4	ND (0.16)	ND (0.18)	ND (0.18)	4.7	ND (0.16)	ND (0.17)	ND (0.17)	ND (0.18)	ND (0.18)	4	ND (0.15)	ND (0.16)	ND (0.17)	19	0.23	ND (0.15)	2	ND (0.17)
Benzo(k)fluoranthene	70	5.7	ND (0.12)	ND (0.13)	ND (0.13)	2.9	ND (0.12)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	4.3	ND (0.11)	ND (0.12)	ND (0.13)	12	0.18	ND (0.11)	1.2	ND (0.13)
bis(2-Ethylhexyl)phthalate	90	ND (3.8)	ND (0.2)	ND (0.22)	ND (0.22)	ND (0.18)	ND (0.2)	ND (0.22)	ND (0.21)	ND (0.23)	ND (0.22)	ND (0.91)	ND (0.19)	ND (0.21)	ND (0.21)	ND (3.6)	ND (0.18)	ND (0.19)	ND (0.18)	ND (0.22)
Chrysene	70	14	ND (0.12)	ND (0.13)	ND (0.13)	11	0.12	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	9.3	ND (0.11)	ND (0.12)	ND (0.13)	33	0.36	ND (0.11)	3	0.23
Dibenz(a,h)anthracene	0.7	ND (2.3)	ND (0.12)	ND (0.13)	ND (0.13)	1.3	ND (0.12)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	1.1	ND (0.11)	ND (0.12)	ND (0.13)	4.4	ND (0.11)	ND (0.11)	0.42	ND (0.13)
Dibenzofuran	100	ND (3.8)	ND (0.2)	ND (0.22)	ND (0.22)	1.2	ND (0.2)	ND (0.22)	ND (0.21)	ND (0.23)	ND (0.22)	ND (0.91)	ND (0.19)	ND (0.21)	ND (0.21)	7	ND (0.18)	ND (0.19)	0.38	ND (0.22)
Fluoranthene	1000	35	ND (0.12)	ND (0.13)	ND (0.13)	29	0.23	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	17	ND (0.11)	ND (0.12)	ND (0.13)	87	0.63	ND (0.11)	6.3	0.41
Fluorene	1000	ND (3.8)	ND (0.2)	ND (0.22)	ND (0.22)	2.2	ND (0.2)	ND (0.22)	ND (0.21)	ND (0.23)	ND (0.22)	1.3	ND (0.19)	ND (0.21)	ND (0.21)	10	ND (0.18)	ND (0.19)	0.89	ND (0.22)
Indeno(1,2,3-cd)pyrene	7	8.6	ND (0.16)	ND (0.18)	ND (0.18)	5.9	ND (0.16)	ND (0.17)	ND (0.17)	ND (0.18)	ND (0.18)	4.6	ND (0.15)	ND (0.16)	ND (0.17)	20	0.26	ND (0.15)	2	ND (0.17)
Naphthalene	4	ND (3.8)	ND (0.2)	ND (0.22)	ND (0.22)	0.73	ND (0.2)	ND (0.22)	ND (0.21)	ND (0.23)	ND (0.22)	ND (0.91)	ND (0.19)	ND (0.21)	ND (0.21)	3.9	ND (0.18)	ND (0.19)	0.55	ND (0.22)
Phenanthrene	10	25	ND (0.12)	ND (0.13)	ND (0.13)	22	0.21	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	13	ND (0.11)	ND (0.12)	ND (0.13)	85	0.24	ND (0.11)	6.3	0.41
Pyrene	1000	28	ND (0.12)	ND (0.13)	ND (0.13)	24	0.21	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	15	ND (0.11)	ND (0.12)	ND (0.13)	72	0.57	ND (0.11)	6.6	0.36
SUM of Semi-Volatile Organic Compounds	NA	174.2	ND	ND	ND	154.45	1.04	ND	ND	ND	ND	102.7	ND	ND ND	ND	483.9	3.81	ND	42.79	2.08
	1471	174.2	ND	ND	ND	154.45	1.04	140	ND	ND	140	102.7	ND	140	ND	403.5	5.01	ND	42.73	2.00
Total Petroleum Hydrocarbons (mg/kg)																				
Petroleum hydrocarbons	1000	9390	ND (40.3)	62	ND (43.5)	511	88.5	ND (41.7)	ND (42.5)	ND (44.8)	ND (42.2)	971	ND (37.7)	ND (41)	ND (41.2)	315	ND (36.2)	ND (36.6)	425	47.2
EPH (mg/kg)					· <u></u>				<u> </u>											<u> </u>
MADEP C11-C22 Aromatic Hydrocarbons, Adjusted	1000	156			-	_	_	_	_	_	_	_	_	_	_		_	_	_	_
MADEP C11-C22 Aromatic Hydrocarbons, Adjusted MADEP C11-C22 Aromatic Hydrocarbons, Unadjusted	NA	245		-	_	_			_						-					_
MADEP C11-C22 Aromatic Hydrocarbons, ornadjusted		49.2			-	-	1	_	_	_		-	[[[-	_	_	_	1
MADEP C19-C36 Aliphatic Hydrocarbons MADEP C9-C18 Aliphatic Hydrocarbons	3000 1000			-	-	-	1	_	l -	_	-	-		-	-	<u> </u>	-	_	_	1
INIADEL C3-C10 WIIMIIGIIC LIANIOCGEDOUS	1000	ND (14.9)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Inorganic Compounds (mg/kg)							1													1
Antimony	20	ND (2.26)	ND (2.42)	ND (2.62)	ND (2.6)	ND (2.12)	ND (2.32)	ND (2.49)	ND (2.47)	ND (2.73)	ND (2.53)	2.73	ND (2.26)	ND (2.42)	ND (2.49)	ND (2.15)	ND (2.24)	ND (2.18)	ND (2.13)	ND (2.5)
Arsenic	20	7.68	5.59	9.06	9.71	8.86	9.36	10.2	12.6	13.3	10.2	7	5.04	6.4	9.59	7.46	2.68	5.26	8.38	7.75
Barium	1000	117	41.1	73.6	91.4	51.7	97.7	81.7	89.4	86.4	75.1	106	46.4	37.7	94.6	106	42.2	41.6	78.4	200
Beryllium	90	0.393	0.402	0.806	0.914	ND (0.212)	0.26	0.469	0.455	0.469	0.424	0.314	0.479	0.523	0.792	0.343	0.3	0.484	0.316	0.345
Cadmium	70	ND (0.451)	ND (0.484)	ND (0.524)	ND (0.52)	0.892	0.642	0.963	1.24	1.36	1.14	ND (0.436)	ND (0.452)	ND (0.485)	ND (0.498)	7.07	2.27	ND (0.436)	1.73	0.845
Chromium	100	16.2	19.4	41.5	48.5	16.5	11.5	40.2	37.7	40.8	36.8	34.4	11.8	22	37.7	16.1	11.3	23.3	16.3	13.4
Lead	200	257	43	16.7	11.2	132	164	9.44	9.26	10.2	9.29	198	77.5	7.06	9.32	500	493	6.83	148	394
Mercury	200	0.493	0.162	ND (0.086)	ND (0.086)	0.334	0.336	ND (0.083)	ND (0.085)	ND (0.089)	ND (0.083)	0.407	0.26	7.00 ND (0.083)	ND (0.085)	0.418	0.114	ND (0.072)	0.229	1.48
· ·																				
Nickel Solonium	600	13.3	11	26.4	32	11.4	6.49	27.9	25.8	26.8	24.1	18	10.3	15 ND (2.42)	26.2	14.6	9.26	14.6	13.5	12.6
Selenium	400	ND (2.26)	ND (2.42)	ND (2.62)	ND (2.6)	ND (2.12)	ND (2.32)	ND (2.49)	ND (2.47)	ND (2.73)	ND (2.53)	ND (2.18)	ND (2.26)	ND (2.42)	ND (2.49)	ND (2.15)	ND (2.24)	ND (2.18)	ND (2.13)	ND (2.5)
Silver	100	ND (0.451)	ND (0.484)	ND (0.524)	ND (0.52)	ND (0.425)	ND (0.465)	ND (0.499)	ND (0.494)	ND (0.545)	ND (0.505)	ND (0.436)	ND (0.452)	ND (0.485)	ND (0.498)	ND (0.429)	ND (0.448)	ND (0.436)	ND (0.427)	ND (0.5)
Thallium	8	ND (2.26)	ND (2.42)	ND (2.62)	ND (2.6)	ND (2.12)	ND (2.32)	ND (2.49)	ND (2.47)	ND (2.73)	ND (2.53)	ND (2.18)	ND (2.26)	ND (2.42)	ND (2.49)	ND (2.15)	ND (2.24)	ND (2.18)	ND (2.13)	ND (2.5)
Vanadium	400	22	20.2	46.7	55.8	23.3	17.5	47.3	50.6	51.9	46.6	28.7	21.1	27.9	51.7	25.1	18.2	31.7	38.5	23.4
Zinc	1000	561	64.9	60.4	71.9	133	96	59.8	65.6	64.5	59.5	269	61.2	31.5	61.7	217	162	33.6	162	389
TCLP Inorganic Compounds (mg/L)							1													1
Lead	NA	0.619			_	ND (0.5)	ND (0.5)	_	_	_		ND (0.5)	_	_	_	0.894	3.32	ND (0.5)	ND (0.5)	ND (0.5)
	144.5		i	1		.= (5)	- (5)	•	i			- ()		i e				(/	()	\/

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

	Parcel	Regulatory Criteria							Parc	el B-3									Lot 5		
Precharact	terization Grid				E5				E	i					F4			E1			E3
L	ocation Name		E5	E5	E5	E5	E6	E6	E6	E6	E6	E6	F4	F4	F4	F4	E1 (OW)	E1 (OW)	E1 (OW)	E3	E3
	Sample Name	MCP	E5_0-5	E5_5-12.5	E5_12.5-15	E5_20-25	E6_0-5	E6_5-8.5	E6_10-15	E6_15-20	E6_20-24	E6_30-34	F4_0-5	F4_5-10	F4_10-15	F4_15-20	E1_0-3	E1_3-8	E1_8-12	E3_0-3	E3_3-6.5
	Sample Date	Reportable	08/09/2017	08/09/2017	08/09/2017	08/09/2017	08/21/2017	08/21/2017	08/21/2017	08/23/2017	08/23/2017	08/23/2017	08/16/2017	08/17/2017	08/17/2017	08/17/2017	08/10/2017	08/10/2017	08/10/2017	08/08/2017	08/08/2017
			L1727786-17																		
		Concentrations	L1728249-08				L1729260-01	L1729260-02					L1728716-01								
	Lab Sample ID	RCS-1 2014	L1728906-02	L1727786-18	L1727786-19	L1727786-20	L1729810-01	L1729810-02	L1729260-03	L1729590-01	L1729590-02	L1729590-03	L1729206-01	L1728827-01	L1728827-02	L1728827-03	L1727995-01	L1727995-02	L1727995-03	L1727453-01	L1727453-02
Samp	ole Depth (bgs)	2014	0 - 5 (ft)	5 - 12.5 (ft)	12.5 - 15 (ft)	20 - 25 (ft)	0 - 5 (ft)	5 - 8.5 (ft)	10 - 15 (ft)	15 - 20 (ft)	20 - 24 (ft)	30 - 34 (ft)	0 - 5 (ft)	5 - 10 (ft)	10 - 15 (ft)	15 - 20 (ft)	0 - 3 (ft)	3 - 8 (ft)	8 - 12 (ft)	0 - 3 (ft)	3 - 6.5 (ft)
So	oil Description		FILL	FILL	CLAY	CLAY	FILL	FILL	CLAY	CLAY	CLAY	CLAY	FILL	FILL	ORGANIC	CLAY	FILL	FILL	FILL	FILL	FILL
Soil Disposal	l Classification		II-3	I-3	I-2	I-2	II-3	I-3	I-2	I-2	I-2	I-2	II-4	I-3	I-3	I-2	II-3	II-1	I-3	II-3	II-1
PCBs (mg/kg)																					
Aroclor-1242 (PCB-1242)		1	ND (0.0369)	ND (0.0404)	ND (0.0454)	ND (0.0433)	ND (0.0348)	ND (0.0386)	ND (0.0436)	ND (0.043)	ND (0.0454)	ND (0.0423)	ND (0.181)	ND (0.0368)	ND (0.041)	ND (0.0429)	ND (0.0354)	ND (0.0372)	ND (0.036)	ND (0.0367)	ND (0.0432)
Aroclor-1248 (PCB-1248)		1	ND (0.0369)	ND (0.0404)	ND (0.0454)	ND (0.0433)	ND (0.0348)	ND (0.0386)	ND (0.0436)	ND (0.043)	ND (0.0454)	ND (0.0423)	ND (0.181)	ND (0.0368)	ND (0.041)	ND (0.0429)	ND (0.0354)	ND (0.0372)	ND (0.036)	ND (0.0367)	ND (0.0432)
Aroclor-1254 (PCB-1254)		1	0.226	0.0413	ND (0.0454)	ND (0.0433)	ND (0.0348)	ND (0.0386)	ND (0.0436)	ND (0.043)	ND (0.0454)	ND (0.0423)	1.93	ND (0.0368)	ND (0.041)	ND (0.0429)	ND (0.0354)	ND (0.0372)	ND (0.036)	ND (0.0367)	ND (0.0432)
Aroclor-1260 (PCB-1260)		1	0.0834	ND (0.0404)	ND (0.0454)	ND (0.0433)	0.0895 P	ND (0.0386)	ND (0.0436)	ND (0.043)	ND (0.0454)	ND (0.0423)	ND (0.181)	ND (0.0368)	ND (0.041)	ND (0.0429)	0.0382	ND (0.0372)	ND (0.036)	ND (0.0367)	ND (0.0432)
SUM of PCBs		1	0.3094	0.0413	ND	ND	0.0895	ND	ND	ND	ND	ND	1.93	ND	ND	ND	0.0382	ND	ND	ND	ND
Other																					
Total Solids (%)		NA	87.7	80	73.4	72.9	93.3	81.9	75.8	76.6	70.4	75.2	90.5	87.6	79.3	76.9	92	87.9	87.5	89.8	75.5
Reactive Cyanide (mg/kg)		NA	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (130)	ND (125)	ND (125)	ND (125)	ND (130)	ND (130)	ND (130)	ND (125)	ND (125)
Reactive Sulfide (mg/kg)		NA	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)
Ignitability (Flashpoint)		NA	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
pH (lab) (pH units)		NA	8.6	8.3	7.9	8.5	8.3	8.7	7.8	7.8	8	8.1	9.6	7.5	7.2	7.8	8.5	7.8	7.3	8.5	7.4
Conductivity (umhos/cm)		NA	120	130	130	370	100	76	120	160	160	160	99	42	56	110	72	440	82	96	2200
VPH (mg/kg)																					
MADEP C5-C8 Aliphatic Hydrocarbons, Adjusted		100	ND (5.05)	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	-
MADEP C5-C8 Aliphatic Hydrocarbons, Unadjusted		NA	ND (5.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
MADEP C9-C10 Aromatic Hydrocarbons		100	ND (5.05)	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
MADEP C9-C12 Aliphatic Hydrocarbons, Adjusted		1000	ND (5.05)	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	-	-	-
MADEP C9-C12 Aliphatic Hydrocarbons, Unadjusted	d	NA	ND (5.05)	-	_	-	-	_	-	-	_	-	-	-	_	-	_	_	-	-	_

ABBREVIATIONS AND NOTES:

-: Not Analyzed

NA: Not Applicable

ND (2.5): Not detected, number in parentheses is the laboratory detection limit

NI: Not Ignitable

- VOC, SVOC and PCB analytes detected in at least one sample are reported herein. For a complete li

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

FILE NO. 1307/1-002		T												
Parcel	Regulatory Criteria			1			1	Lot 5				T		
Precharacterization Grid			1		F2			F3	T ==	G	1		G3	1 00
Location Name		F1	F1	F2	F2	F2	F3	F3	F3	G1	G1	G3	G3	G3
Sample Name	MCP	F1_0-3	F1_3-7	F2_0-3	F2_3-8	F2_8-13.5	F3_0-3.5	F3_3.5-8	F3_8-12.8	G1_0-3	G1_3-11	G3_0-2	G3_2-6	G3_6-12
Sample Date	Reportable	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/11/2017	08/11/2017	08/11/2017
	Concentrations													
Lab Sample ID	RCS-1	L1727453-07	L1727453-08	L1727453-05	L1727453-06	L1727453-11	L1727453-03	L1727453-04	L1727453-12	L1727453-09	L1727453-10	L1728211-01	L1728211-02	L1728211-03
Sample Depth (bgs)	2014	0 - 3 (ft)	3 - 7 (ft)	0 - 3 (ft)	3 - 8 (ft)	8 - 13.5 (ft)	0 - 3.5 (ft)	3.5 - 8 (ft)	8 - 12.8 (ft)	0 - 3 (ft)	3 - 11 (ft)	0 - 2 (ft)	2 - 6 (ft)	6 - 12 (ft)
Soil Description		FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL
Soil Disposal Classification		II-1	II-1	II-1	III-2/II-5	I-3	II-3	II-5, TCLP FAIL	I-3	III-2/II-5	II-1	II-1	II-2	I-3
Son Pisposai Glassification					27.1. 3		5	5) 102. 17.12		2, 3	2			. 3
Volatile Organic Compounds (mg/kg)														
1,2,4-Trimethylbenzene	1000	ND (0.0041)	ND (0.0048)	ND (0.0045)	ND (0.0042)	ND (0.0041)	ND (0.0035)	ND (0.0033)	ND (0.0034)	ND (0.005)	ND (0.0037)	ND (0.0029)	ND (0.0048)	ND (0.0034)
1,3,5-Trimethylbenzene	10	ND (0.0041)	ND (0.0048)	ND (0.0045)	ND (0.0042)	ND (0.0041)	ND (0.0035)	ND (0.0033)	ND (0.0034)	ND (0.005)	ND (0.0037)	ND (0.0029)	ND (0.0048)	ND (0.0034)
2-Butanone (Methyl Ethyl Ketone)	4	ND (0.01)	ND (0.012)	ND (0.011)	ND (0.01)	ND (0.01)	ND (0.0088)	ND (0.0083)	0.0094	ND (0.012)	ND (0.0093)	ND (0.0074)	ND (0.012)	ND (0.0085)
Acetone	6	ND (0.037)	ND (0.044)	ND (0.041)	ND (0.038)	ND (0.037)	ND (0.032)	ND (0.03)	0.059	ND (0.045)	ND (0.033)	ND (0.026)	ND (0.043)	ND (0.031)
Benzene	2	ND (0.001)	ND (0.0012)	ND (0.0011)	ND (0.001)	ND (0.001)	ND (0.00088)	0.001	ND (0.00085)	ND (0.0012)	ND (0.00093)	ND (0.00074)	ND (0.0012)	ND (0.00085)
Ethylbenzene	40	ND (0.001)	ND (0.0012)	ND (0.0011)	ND (0.001)	ND (0.001)	ND (0.00088)	ND (0.00083)	ND (0.00085)	ND (0.0012)	ND (0.00093)	ND (0.00074)	ND (0.0012)	ND (0.00085)
Isopropylbenzene (Cumene)	1000	ND (0.001)	ND (0.0012)	ND (0.0011)	ND (0.001)	ND (0.001)	ND (0.00088)	ND (0.00083)	ND (0.00085)	ND (0.0012)	ND (0.00093)	ND (0.00074)	ND (0.0012)	ND (0.00085)
Naphthalene	4	ND (0.0041)	ND (0.0048)	ND (0.0045)	ND (0.0042)	ND (0.0041)	ND (0.0035)	0.01	ND (0.0034)	ND (0.005)	ND (0.0037)	ND (0.0029)	ND (0.0048)	ND (0.0034)
n-Butylbenzene	NA 100	ND (0.001)	ND (0.0012)	ND (0.0011)	ND (0.001)	ND (0.001)	ND (0.00088)	ND (0.00083)	ND (0.00085)	ND (0.0012)	ND (0.00093)	ND (0.00074)	ND (0.0012)	ND (0.00085)
n-Propylbenzene	100	ND (0.001)	ND (0.0012)	ND (0.0011)	ND (0.001)	ND (0.001)	ND (0.00088)	ND (0.00083)	ND (0.00085)	ND (0.0012)	ND (0.00093)	ND (0.00074)	ND (0.0012)	ND (0.00085)
Toluene Trichlorofluoromethane (CFC-11)	30	ND (0.0016)	ND (0.0018)	ND (0.0017)	ND (0.0016)	ND (0.0015)	ND (0.0013)	ND (0.0012)	ND (0.0013)	ND (0.0019)	ND (0.0014)	ND (0.0011)	ND (0.0018)	ND (0.0013)
, ,	1000	ND (0.0041)	ND (0.0048) ND (0.0024)	ND (0.0045) ND (0.0023)	ND (0.0042)	ND (0.0041)	ND (0.0035)	ND (0.0033)	ND (0.0034)	ND (0.005)	ND (0.0037) ND (0.0018)	ND (0.0029)	ND (0.0048)	ND (0.0034)
Xylene (total) SUM of Volatile Organic Compounds	100 NA	ND (0.0021) ND	ND (0.0024) ND	ND (0.0023)	ND (0.0021) ND	ND (0.0021) ND	ND (0.0018) ND	ND (0.0016) 0.011	ND (0.0017) 0.0684	ND (0.0025) ND	ND (0.0018)	ND (0.0015) ND	ND (0.0024) ND	ND (0.0017) ND
·	IVA	140	140	140	140	140	140	0.011	0.0004	140	IND	140	140	140
Semi-Volatile Organic Compounds (mg/kg)														
2-Methylnaphthalene	0.7	ND (0.22)	ND (0.24)	ND (0.22)	ND (0.24)	ND (0.24)	ND (0.22)	ND (0.24)	ND (0.22)	0.24	ND (0.25)	ND (0.22)	0.26	ND (0.24)
Accepable days	4	0.47	0.39	0.15	0.85	ND (0.16)	0.94	ND (0.16)	ND (0.15)	0.75	ND (0.17)	ND (0.14)	ND (0.16)	ND (0.16)
Acenaphthylene	1	0.16	0.23	ND (0.15) 0.45	0.28	ND (0.16)	0.26	0.31	ND (0.15)	0.35	ND (0.17) 0.14	ND (0.14)	ND (0.16) 0.47	ND (0.16)
Anthracene Benzo(a)anthracene	1000 7	1.2 3.3	1.4 3.4	1.4	2.2 5.2	ND (0.12) ND (0.12)	3.7 11	0.33 0.98	ND (0.11) ND (0.11)	2.3 6	0.32	ND (0.11) ND (0.11)	1.7	ND (0.12) ND (0.12)
Benzo(a)pyrene	2	3.1	3.1	1.3	4.8	ND (0.12)	9	0.96	ND (0.11) ND (0.15)	5.2	0.29	ND (0.11) ND (0.14)	1.8	ND (0.12)
Benzo(b)fluoranthene	7	4.1	3.8	1.7	6.2	ND (0.12)	12	1.1	ND (0.11)	6.8	0.36	ND (0.11)	2.6	ND (0.12)
Benzo(g,h,i)perylene	1000	1.8	1.7	0.81	3.2	ND (0.16)	5.6	0.59	ND (0.15)	3	0.17	ND (0.14)	1	ND (0.16)
Benzo(k)fluoranthene	70	1.2	1.3	0.49	2	ND (0.12)	3.3	0.4	ND (0.11)	2	ND (0.12)	ND (0.11)	0.73	ND (0.12)
bis(2-Ethylhexyl)phthalate	90	ND (0.18)	ND (0.2)	ND (0.18)	ND (0.2)	ND (0.2)	0.22	ND (0.2)	ND (0.18)	ND (0.19)	ND (0.21)	ND (0.18)	ND (0.2)	ND (0.2)
Chrysene	70	3.2	3.1	1.3	5	ND (0.12)	11	0.9	ND (0.11)	5.3	0.29	ND (0.11)	1.6	ND (0.12)
Dibenz(a,h)anthracene	0.7	0.47	0.45	0.2	0.79	ND (0.12)	1.3	0.14	ND (0.11)	0.77	ND (0.12)	ND (0.11)	0.27	ND (0.12)
Dibenzofuran	100	0.32	0.41	ND (0.18)	0.61	ND (0.2)	0.47	ND (0.2)	ND (0.18)	0.52	ND (0.21)	ND (0.18)	ND (0.2)	ND (0.2)
Fluoranthene	1000	7	7.3	2.8	11	ND (0.12)	26	2.1	ND (0.11)	12	0.69	ND (0.11)	3.5	ND (0.12)
Fluorene	1000	0.5	0.48	ND (0.18)	1.1	ND (0.2)	0.84	ND (0.2)	ND (0.18)	0.85	ND (0.21)	ND (0.18)	ND (0.2)	ND (0.2)
Indeno(1,2,3-cd)pyrene	7	2.1	2	0.88	3.4	ND (0.16)	6.3	0.64	ND (0.15)	3.5	0.18	ND (0.14)	1.2	ND (0.16)
Naphthalene	4	0.31	0.24	ND (0.18)	0.36	ND (0.2)	0.18	ND (0.2)	ND (0.18)	0.47	ND (0.21)	ND (0.18)	ND (0.2)	ND (0.2)
Phenanthrene	10	5	5.8	1.9	8.3	ND (0.12)	14	1.3	ND (0.11)	8.6	0.57	ND (0.11)	2.1	ND (0.12)
Pyrene SUM of Semi-Volatile Organic Compounds	1000 NA	6 40.23	6 41.1	2.4	8.9 64.19	ND (0.12) ND	22 128.11	1.7	ND (0.11) ND	9.9 68.55	0.59	ND (0.11) ND	2.9	ND (0.12)
	NA	40.23	41.1	15.78	64.19	ND	128.11	11.45	ND	68.55	3.6	ND	20.13	ND
Total Petroleum Hydrocarbons (mg/kg)														
Petroleum hydrocarbons	1000	129	138	300	279	ND (40.4)	321	77.2	ND (36.3)	374	ND (40.7)	80.1	236	ND (38.9)
EPH (mg/kg)														
MADEP C11-C22 Aromatic Hydrocarbons, Adjusted	1000	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C11-C22 Aromatic Hydrocarbons, Unadjusted	NA	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C19-C36 Aliphatic Hydrocarbons	3000	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C9-C18 Aliphatic Hydrocarbons	1000	-	-	-	-	-	-	-	-	-	-	-	-	-
Inorganic Compounds (mg/kg)														
Antimony	20	ND (2.19)	17.8	ND (2.15)	10.3	ND (2.39)	ND (2.11)	ND (2.29)	ND (2.19)	ND (2.18)	ND (2.37)	ND (2.17)	2.37	ND (2.35)
Arsenic	20	5.68	11.1	5.31	8.5	3.42	6.43	14.4	3.65	8.63	10.8	2.33	8.97	3.33
Barium	1000	137	436	122	203	35.6	189	254	20.9	204	272	9.78	239	28.4
Beryllium	90	0.574	0.388	0.486	1.16	0.407	0.659	0.518	0.284	0.485	1.04	ND (0.217)	0.402	0.353
Cadmium	70	1.3	1.41	1.15	3.42	0.479	2.07	1.19	ND (0.438)	1.83	3.46	ND (0.433)	1.23	0.499
Chromium	100	24.7	33.9	23.7	38.2	18.2	31.2	18.3	12.2	21.9	50.8	4.96	13	16.5
Lead	200	299	985	284	735	15.6	268	3320	7.91	1330	607	10	649	8.09
Mercury	20	0.895	7.73	0.655	1.56	ND (0.077)	0.394	0.503	ND (0.074)	1.44	1.45	ND (0.069)	0.333	ND (0.078)
Nickel Solonium	600	18 ND (2.10)	13.2 ND (2.24)	17 ND (2.15)	58.2 ND (2.22)	13.8 ND (2.20)	22.8 ND /2.11\	17.1 ND (2.20)	9.43 ND (2.10)	17.2	31.2 ND (2.27)	4.02	15.5	14.2 ND (2.25)
Selenium Silver	400 100	ND (2.19) ND (0.438)	ND (2.34) ND (0.467)	ND (2.15) ND (0.43)	ND (2.33) ND (0.465)	ND (2.39) ND (0.479)	ND (2.11) ND (0.422)	ND (2.29) ND (0.459)	ND (2.19) ND (0.438)	ND (2.18) ND (0.437)	ND (2.37) 0.569	ND (2.17) ND (0.433)	ND (2.36) ND (0.473)	ND (2.35) ND (0.471)
Thallium	100	ND (0.438) ND (2.19)	ND (0.467) ND (2.34)	ND (0.43) ND (2.15)	ND (0.465) ND (2.33)	ND (0.479) ND (2.39)	ND (0.422) ND (2.11)	ND (0.459) ND (2.29)	ND (0.438) ND (2.19)	ND (0.437) ND (2.18)	0.569 ND (2.37)	ND (0.433) ND (2.17)	ND (0.473) ND (2.36)	ND (0.471) ND (2.35)
Vanadium	400	29.9	19.2	25.3	26.8	27.4	36.6	24.6	17.2	25.5	32.8	ND (2.17)	20.9	28.4
Zinc	1000	25.5	398	175	456	42.3	279	486	28.6	504	352	15.4	293	36.7
	1000		230		.50	. 2.0		.55					-55	20.7
TCLP Inorganic Compounds (mg/L)		2 22=	2.74	0.045		NO (0 =)			NO (0 =)			N:0 (0 =)	2.05	NO 10 =1
Lead	NA	0.927	3.71	0.912	1.8	ND (0.5)	1.17	8.02	ND (0.5)	4.26	1.62	ND (0.5)	2.05	ND (0.5)

TABLE I SUMMARY OF SOIL QUALITY DATA BOYNTON YARDS SOMERVILLE, MA FILE NO. 130771-002

Parcel	Regulatory Criteria							Lot 5						
Precharacterization Grid		F	1		F2			F3		G	1		G3	
Location Name		F1	F1	F2	F2	F2	F3	F3	F3	G1	G1	G3	G3	G3
Sample Name	МСР	F1_0-3	F1_3-7	F2_0-3	F2_3-8	F2_8-13.5	F3_0-3.5	F3_3.5-8	F3_8-12.8	G1_0-3	G1_3-11	G3_0-2	G3_2-6	G3_6-12
Sample Date	Reportable	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/08/2017	08/11/2017	08/11/2017	08/11/2017
	Concentrations													
	RCS-1													
Lab Sample ID	2014	L1727453-07	L1727453-08	L1727453-05	L1727453-06	L1727453-11	L1727453-03	L1727453-04	L1727453-12	L1727453-09	L1727453-10	L1728211-01	L1728211-02	L1728211-03
Sample Depth (bgs)	2014	0 - 3 (ft)	3 - 7 (ft)	0 - 3 (ft)	3 - 8 (ft)	8 - 13.5 (ft)	0 - 3.5 (ft)	3.5 - 8 (ft)	8 - 12.8 (ft)	0 - 3 (ft)	3 - 11 (ft)	0 - 2 (ft)	2 - 6 (ft)	6 - 12 (ft)
Soil Description		FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL
Soil Disposal Classification		II-1	II-1	II-1	III-2/II-5	I-3	II-3	II-5, TCLP FAIL	I-3	III-2/II-5	II-1	II-1	II-2	I-3
PCBs (mg/kg)														
Aroclor-1242 (PCB-1242)	1	ND (0.0363)	ND (0.0393)	ND (0.0348)	ND (0.0381)	ND (0.0404)	ND (0.0357)	ND (0.0387)	ND (0.0362)	ND (0.0372)	ND (0.0396)	ND (0.0367)	ND (0.0384)	ND (0.0379)
Aroclor-1248 (PCB-1248)	1	ND (0.0363)	ND (0.0393)	ND (0.0348)	ND (0.0381)	ND (0.0404)	ND (0.0357)	ND (0.0387)	ND (0.0362)	ND (0.0372)	ND (0.0396)	ND (0.0367)	ND (0.0384)	ND (0.0379)
Aroclor-1254 (PCB-1254)	1	0.0373	ND (0.0393)	ND (0.0348)	ND (0.0381)	ND (0.0404)	ND (0.0357)	ND (0.0387)	ND (0.0362)	0.0536	ND (0.0396)	ND (0.0367)	ND (0.0384)	ND (0.0379)
Aroclor-1260 (PCB-1260)	1	ND (0.0363)	ND (0.0393)	ND (0.0348)	ND (0.0381)	ND (0.0404)	ND (0.0357)	ND (0.0387)	ND (0.0362)	ND (0.0372)	ND (0.0396)	ND (0.0367)	ND (0.0384)	ND (0.0379)
SUM of PCBs	1	0.0373	ND	ND	ND	ND	ND	ND	ND	0.0536	ND	ND	ND	ND
Other														
Total Solids (%)	NA	89.6	80.8	89.9	84	82.1	90.4	83.8	88.1	88.2	79.4	90.7	82.4	83.8
Reactive Cyanide (mg/kg)	NA	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)	ND (125)				
Reactive Sulfide (mg/kg)	NA	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)	ND (250)				
Ignitability (Flashpoint)	NA	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
pH (lab) (pH units)	NA	7.9	7.5	8.8	8.1	7.3	8.5	7.9	7.3	8.3	7.6	6.7	7.5	7
Conductivity (umhos/cm)	NA	140	120	280	420	140	830	140	65	60	170	26	200	74
VPH (mg/kg)														
MADEP C5-C8 Aliphatic Hydrocarbons, Adjusted	100	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C5-C8 Aliphatic Hydrocarbons, Unadjusted	NA	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C9-C10 Aromatic Hydrocarbons	100	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C9-C12 Aliphatic Hydrocarbons, Adjusted	1000	-	-	-	-	-	-	-	-	-	-	-	-	-
MADEP C9-C12 Aliphatic Hydrocarbons, Unadjusted	NA	-	-	-	-	-	-	-	-	-	-	-	-	-

ABBREVIATIONS AND NOTES:

-: Not Analyzed

NA: Not Applicable

ND (2.5): Not detected, number in parentheses is the laboratory detection limit

NI: Not Ignitable

- VOC, SVOC and PCB analytes detected in at least one sample are reported herein. For a complete li

TABLE II
SUMMARY OF GROUNDWATER QUALITY DATA
BOYNTON YARDS
SOMERVILLE, MA
FILE NO. 130771-002

Precharacterization Grid	Regulatory	Criteria	A6	E1	E6	Parcel B-2
Location Name	Reportable	MWRA	A6 (OW)	E1 (OW)	E6	HA17-3 (OW)
Sample Name	Concentrations	Discharge	A6_2017-0908	E1_2017-0908	E6_2017-0908	HA17-3_2017-0908
Sample Date	RCGW-2	Criteria	09/08/2017	09/08/2017	09/08/2017	09/08/2017
Lab Sample ID	2014	Criteria	L1731849-02	L1731849-04	L1731849-03	L1731849-01
Volatile Organic Compounds (ug/L)						
SUM of Volatile Organic Compounds	NA	NA	ND	ND	ND	ND
EPH (ug/L)						
MADEP C11-C22 Aromatic Hydrocarbons, Adjusted	5000	1000	ND (100)	ND (178)	ND (100)	ND (100)
MADEP C19-C36 Aliphatic Hydrocarbons	50000	1000	ND (100)	ND (178)	ND (100)	ND (100)
MADEP C9-C18 Aliphatic Hydrocarbons	5000	1000	ND (100)	ND (178)	ND (100)	ND (100)
2-Methylnaphthalene	2000	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Acenaphthene	6000	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Acenaphthylene	40	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Anthracene	30	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Benzo(a)anthracene	1000	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Benzo(a)pyrene	500	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Benzo(b)fluoranthene	400	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Benzo(g,h,i)perylene	20	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Benzo(k)fluoranthene	100	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Chrysene	70	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Dibenz(a,h)anthracene	40	NA	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Fluoranthene	200	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Fluorene	40	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Indeno(1,2,3-cd)pyrene	100	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Naphthalene	700	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Phenanthrene	10000	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Pyrene	20	1000	ND (11.4)	ND (17.8)	ND (11.4)	ND (11.1)
Dissolved Metals (mg/L)						
Antimony	8	10	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
Arsenic	0.9	0.5	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)
Barium	50	NA	0.308	0.182	0.131	0.188
Beryllium	0.2	NA	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)
Cadmium	0.004	0.1	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)
Chromium	0.3	1	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Iron	NA	NA	3.5	0.07	2.03	0.339
Lead	0.01	0.2	ND (0.01)	ND (0.01)	0.021	ND (0.01)
Mercury	0.02	0.001	ND (0.0002)	ND (0.0002)	ND (0.0002)	ND (0.0002)
Nickel	0.2	1	ND (0.025)	ND (0.025)	ND (0.025)	ND (0.025)
Selenium	0.1	5	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Silver	0.007	2	ND (0.007)	ND (0.007)	ND (0.007)	ND (0.007)
Thallium	3	NA	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
Vanadium	4	NA	ND (0.01)	ND (0.01)	ND (0.01)	ND (0.01)
Zinc	0.9	1	ND (0.05)	ND (0.05)	0.081	ND (0.05)

ABBREVIATIONS AND NOTES:

-: Not Analyzed

NA: Not Applicable

ND (2.5): Not detected, number in parentheses is the laboratory detection limit

- Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.
- Bold values indicate an exceedance of the RCGW-2 Criteria
- Bold values indicate an exceedance of the MWRA Discharge Criteria.

IN, DAYNA Printed: 10/31/2017 10:50 AM Layout: B012

NOVEMBER 2017

FIGURE 3

DAYNA Printed: 10/31/2017 10:39 AM Layout:

APPENDIX A

Exploration Reports

Н	ALE	Y	н			Т	EST	BORING REPORT		I	Во	rin	g I	No.			A4		
Pro Clie Cor		DL	J REA	L EST	ATE (CAPITA	RVILLE AL PAR CE, INC	TNERS		Sh Sta	eet art	l No). 1 18	of 3 A	1-0 3 ugus	st 2			
				Casing	San	npler	Barrel	Drilling Equipment and Procedures			nish iller				eirh				
Тур	е			HW		S		Rig Make & Model: Mobile Drill B57 Truck		Нδ	ξΑ I	Rep).	S.	Sha	ay			
Insid	de Dia	meter ((in.)	4	1 3	3/8		Bit Type: Roller Bit Drill Mud: None			eva atun	tior	1		6 (AV				
Han	nmer V	Veight	(lb)	140	14	40	-	Casing: HW Drive to 10.0 ft				ion	S		Plan		<u> </u>		
Han		all (in	.)	30	3	0	-	Hoist/Hammer: Winch Automatic Hammer PID Make & Model: MiniRAE 2000 10.6 eV											
ft)	Sampler Blows per 6 in.	л.) С	o (E)	PID Readings (ppm)	loqu	Stratum Change Elev/Depth (ft)	` \	ISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	ı	⊢	avel	+	San	d			ield σ	Tes	st .
Depth (ft)	ler B r 6 in	ple I	Sample Depth (ft)	teadi	Syr	atun	-	(Color, GROUP NAME, max. particle size [†] ,		arse	ē	Coarse	diun	ē	es	ıncy	nes	city	gt
Dep	amp	Sample No. & Rec. (in.)	Sa	등 교	USCS Symbol	\$\frac{1}{2} \frac{1}{2} \right		structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)		% Coarse	% Fine	% Co	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 - -	9 6 8 7	S1 24	0.0 2.5		SP- SM		Mediu	n dense brown to black poorly graded SAND with silt an (SP-SM), mps 3.0 cm, no structure except coarse gravel d to two distinct 1.0 in. layers, no odor, dry, trace cinded		-	_	-	20	-					
- -	8 9	S2 20	2.5 5.0	-	SM	7.1 2.5		n dense dark brown to black silty SAND (SM), mps 1.5 cture, no odor, dry, 5% cinders, trace ash	- cm,		10	15	15	35	25				
	8 11		5.0				10 36 0	•											
	11					1.6		-FILL-											
- 5 - -	8 6 11 4	S3 9	5.0 7.5		SP	4.6 5.0		n dense brown poorly graded SAND with gravel (SP), n, no structure, no odor, wet (probably from drilling)	nps	10	15	35	20	15	5				
	2	S4	7.5		SP		S4 top	9.0 in.: Similar to above		10	15	35	20	15	5				
	1 3	9	10.0				Note: 3	.0 in. diameter spoon used from 5.0 to 10.0 ft for sample.	le										
- - 10 -	6				OL/ OH	0.6 9.0 -0.4 10.0		.0 in. spoon stiff olive gray ORGANIC SOIL (OL/OH) ps 1.0 mm, no structure, no odor, moist -ORGANIC DEPOSITS-	with					10	90				
	3 5	S5 24	10.0 12.5	0.9	CL	10.0	1	ive brown lean CLAY (CL), mps < 0.1 mm, blocky	/						100				
-	6 7						structu	PP	2.5 tsf										
- - - 15 -	6 6 7 8	S6 14	12.5 15.0	1.3	CL		1	ive brown lean CLAY (CL), mps < 0.1 mm, blocky re, no odor, moist PP	2.5 tsf						100	L	Н	M	V
-								-MARINE DEPOSITS-											
- 20 -		Wa	ater Le	vel Dat	a.	<u> </u>	1	Sample ID Well Diagram			٠.	Sum	ıma	ırv	I				
D	ate	Time	Elap Time	sed B		th (ft) to Bottom of Hole	o: Water	O - Open End Rod T - Thin Wall Tube Riser Pipe Screen Screen	Overl Rock		den	(ft	i)		55.7	7			
8/1	8/17	1200	10		10.0	55.7	10.8	S - Splitspoon Sample G - Geoprobe Cuttings Grout	Samp	oles	;		,	14		14			
								Concrete Bentonite Seal	Bori						F	14			
	d Tests			Toughr	néss: L	Low		m H - High Dry Strength: N - None L - Low							Very	/ Hig	h		
No	te: Ma							servation within the limitations of sampler size. sual-manual methods of the USCS as practiced b	oy Hale	y &	Alc	<u>lric</u>	h, lı	ıc.					

6 Nov 17

		Y RIC	Н				EST BORING REPORT	F	ile	ing No. et N	1	307	71-0 of	002	14	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	இ Coarse	% Fine	ė	% Medium		% Fines	Dilatancy	Toughness B	Plasticity
20	2 2 3 4	S7 24	20.0 22.0	0.8	CL		Medium stiff olive brown lean CLAY (CL), mps < 0.1 mm, blocky structure, no odor, wet PP 1.5 tsf							N	Н	
_	4 3 2 2	S8 10	22.0 24.0	0.3	CL		Medium stiff olive gray lean CLAY (CL), mps 2.8 cm as single coarse gravel piece, no odor, wet PP 1.2 tsf	5					95	N	M	H
25 -							-MARINE DEPOSITS-									
30 -	2 2 2 2 3	S9 24	29.0 31.0	0.3	CL		Soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet $ PP \ 1.0 \ tsf $						100	N	M	H
35 -	1 1 1 3	S10 24	34.0 36.0	0.1	CL		Very soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet $PP < 0.5 \ \mathrm{tsf}$						100	N	L	H
40 -	1 1 2 2	S11 24	39.0 41.0	0.1	CL		Soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet PP~0.8~tsf						100	N	L	F
45 –	1 1/12 1	S12 24	44.0 46.0	0.2	CL		Similar to above, except very soft PP 0.5 tsf						100	N	L	I
						-37.4 47.0	Note: Change in drilling effort at 47.0 ft.	_	-							
	6	S13	49.0	0.2	CL		Stiff olive gray sandy lean CLAY (CL), mps 2.2 cm, no structure, no		5	10	15	10	60			

Н		Y	:H			TI	EST BORING REPORT	F	ile	ing No.	1	307	71-0	02	4	
			I	ø	_	E		_	Shee avel	_	lo. San	3 d	of		eld	
(#)	Blow in.	e No (in.)	ple (#)	ading n)	ymbc	um nge pth (fi	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	_						S	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
50 -	8 5 9	12	51.0				odor, wet									
							-MARINE DEPOSITS-									
						-42.9 52.5	TOP OF WEATHERED BEDROCK 52.5 FT									
						32.3	-WEATHERED BEDROCK-									
55 -	21 22	S14 12	54.0 55.7	0.0			Dense light gray completely weathered rock, difficult to discern rock fabric									
55 -	17 100/2					-46.1 55.7	BOTTOM OF EXPLORATION 55.7 FT									
							Note: Split spoon refusal at 55.7 ft.									

H&A-TEST BORING WITH PERM PID COLUMN HA-LIB09-BOS.GLB HA-TB+CORE+WELL-09 W FENCE.GDT G:\130771 - 1 BOYNTON YARDS\GINT\130771-002-TB.GPJ

Н		Y	н				TES	T BORING REPORT Boring No. A6 (OW)
Pro Clie Cor	-	DL	J REA	L EST	ATE	CAPI	ERVILI FAL PA TCE, IN	RTNERS Sheet No. 1 of 3 Start 14 August 2017
				Casing	San	npler	Barre	
Тур	е		Н	W NW	,	S		Rig Make & Model: Mobile Drill B57 Truck H&A Rep. S. Shay
Insid	de Dia	meter ((in.)	4 - 3	1 :	3/8		Bit Type: Roller Bit Elevation 9.4 (est.) Drill Mud: None Datum NAVD 88
	nmer F	Veight Fall (in.	` ′	140 30		40 80	-	Casing: HW Drive to 20.0 ft NW to 52.0 ft Hoist/Hammer: Winch Automatic Hammer PID Make & Model: MiniRAE 2000 10.6 eV
£	lows 1.	No. in.)	e £e	ings	loqu	ram	n e n (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Gravel Sand Field Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) (Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)
	6 13 19 24	S1 24	0.0 2.5		SM	44		Dense brown to gray brown and dark brown silty SAND (SM), mps 3.0 cm as trace coarse gravel, layers up to 4.0 in. thick, no odor, dry, trace brick
	9 13 13	S2 24	2.5 5.0		SM			Similar to above, except medium dense layers 4.0 to 6.0 in. 5 5 15 20 20 35 thick
	10							-FILL-
5 -	6 3 2	S3 10	5.0 7.0		SC		4.4 5.0	Loose yellow brown clayey SAND with gravel (SC), mps 2.0 5 10 10 10 25 40 cm, no structure, no odor, moist, disturbed
	2							-COHESIVE FILL-
	2 2 1 1	S4 8	7.0 9.0		SC		0.4	Similar to S3 above 5 10 10 10 25 40 Note: Used 3.0 in. diameter spoon 5.0 to 9.0 ft to recover sample volume. Color change at bottom of sample.
•							0.4 9.0	
10 -	2 2 3	S5 18	10.0 12.5		OL/ OH			Medium stiff gray ORGANIC SOIL (OL/OH), mps 1.0 mm, no structure, no odor, wet, 20% peat fibers throughout sample
	2							-ORGANIC DEPOSITS-
	2 1 1	S6 12	12.5 15.0		OL/ OH			Similar to S5 above, except very soft
	1						5.6	
15 -	5 4 2 3	S7 24	15.0 17.5		SP		-5.6 15.0	Loose gray poorly graded SAND (SP), mps 4.0 mm, weakly stratified, slight organic odor, wet, trace shells, trace peat fibers -ESTUARINE DEPOSITS-
	4 4 6	S8 24	17.5 20.0		CL		-7.6 17.0	Stiff yellow brown lean CLAY (CL), mps < 0.1 mm, blocky, no odor, wet
	7							-MARINE DEPOSITS-
20 -								
D	ate	Time	Elap Time	(hr Bo		th (ft) Botto of Ho	m Wate	Sample ID Well Diagram Summary O - Open End Rod Error T - Thin Wall Tube U - Undisturbed Sample U - Undisturbed Sample Filter Sand Rock Cored (ft) -
8/1	6/17	0650	16	.0 N	W 52	S - Splitspoon Sample G - Geoprobe Cuttings Grout Concrete Bentonite Seal Samples S19 A6 (OW)		
Field	d Tests	:	1					v N - None Plasticity: N - Nonplastic L - Low M - Medium H - High Joy Strength: N - None L - Low M - Medium H - High V - Very High
†No	te: Ma	ximum į	particle	size is	detern	nined b	v direct	observation within the limitations of sampler size. visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

H&A-TEST BORING WITH PERM PID COLUMN HA-LIB09-BOS,GLB HA-TB+CORE+WELL-09 W FENCE.GDT GA130771 - 1 BOYNTON YARDS/GINT/130771-002-TB.GPJ 9 Nov 17

Н	ALE	Y					TES	T BORING REPORT	1		ng No.				46 (102	OV	V)	
			Н						S	hee	et N	0.	2	of	3			_
(L	3lows n.	S (ii)	<u>⊕</u> (⊒	dings)	loqu	gram	E 94	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	_	avel		Sand E	t			eld g		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
20 -	3 3 4	S9 2	20.0 22.0		CL			Medium stiff olive brown lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet, poor recovery						100				
	5							-MARINE DEPOSITS-										
25 -	2 1 2 1	S10 24	24.0 26.0		CL			Soft olive gray lean CLAY (CL), mps 3.0 cm as single coarse gravel piece, no structure, no odor, wet	5					95	N	L	Н	
30 -	1 1 1 1	S11 24	29.0 31.0		CL			Very soft gray olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet						100	N	L	Н	
35 -	1 1 1 1	S12 24	34.0 36.0		CL			Very soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet						100	N	L	Н	
· - 40 –	1 1 1 1	S13 24	39.0 41.0	-	CL			Similar to above						100	N	L	Н	[
45 –	1 6 10 11	S14 24	44.0 46.0		CL SC		-35.6 45.0	S14 top 12.0 in: Similar to above S14 bottom 12.0 in: Medium dense olive Orange clayey SAND with gravel (SC), mps 2.5	10	15	10	15			N	L	Н	
								Note: Well defined stratum break within sampleGLACIOMARINE DEPOSITS-										
	13	S15	49.0	-	SC			Dense olive gray clayey SAND with gravel (SC), mps 3.0 cm,	10	15	10	15	15	35				
									В						46 (=		•

Н		TEST BORING REPORT							F	ile	ing No.	1	1307	71-0	A6 (OW	7)
			I	· (a)	_				+	Shee avel	_	lo. San		of	_	ield	
€	Blow in	No (in.)	Sample Depth (ft)	ding (r	USCS Symbol	Well Diagram	E ge ⊒	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	$\overline{}$						Ś	
Depth (ft)	pler er 6	nple tec.	amk	Rea (ppn	S S	Dia	tratu than Dep	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions	oars	ne	% Coarse	% Medium	ne	nes	Dilatancy	Toughness	Plasticity
ے	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	လူမ	PID Readings (ppm)	nsc	Well	Stratum Change Elev/Depth (ft)	GEOLOGIC INTERPRETATION)	% Coarse	% Fine	S C	W	% Fine	% Fines	Dilat	Loné	Plasticity
50 -	22 11	18	51.0					no structure, no odor, wet									
	8							-GLACIOMARINE DEPOSITS-									
							-42.6 52.0	TOP OF WEATHERED BEDROCK 52.0 FT Note: Abrupt change in drilling effort and effort to drive casing	╄							\dashv	\dashv
							32.0	at 52.0 ft.									
	100/5	S16_	54.0 54.4					Very dense light gray highly weathered rock, rock fabric present									
55 -								-WEATHERED BEDROCK-									
60 -	100/5	S17 5	59.0 59.4					Very dense light gray highly weathered rock, rock fabric present									
65 –	92 <u>100/</u> J/	S18 7	64.0 \64.6					Very dense light gray completely weathered rock, rock fabric, present, bedding apparent									
	\100/2/	\\ \frac{\S19}{2} \	69.0				-59.8 69.2	Very dense gray highly weathered rock BOTTOM OF EXPLORATION 69.2 FT									
			09.2					Note: Split spoon refusal at 69.2 ft.									
								Note: PID readings not recorded due to instrument malfunction.									
															A6 (<u>_</u>	_

GROUNDWATER OBSERVATION WELL **A6 (OW)** Well No. INSTALLATION REPORT Well Diagram Project **BOYNTON YARDS** File No. 130771-002 SOMERVILLE, MA Riser Pipe Date Installed 16 Aug 2017 Location Screen H&A Rep. S. Shay DLJ REAL ESTATE CAPITAL PARTNERS Client Filter Sand Location See Plan Contractor NORTHERN DRILL SERVICE, INC. Cuttings Grout Driller John Beirholm Concrete Ground El. 9.4 (est.) Bentonite Seal Datum NAVD 88 14.0 ft Initial Water Level (depth bgs) SOIL/ROCK ELEVATION (ft.) WELL GRAPHIC DEPTH (ft.) **DETAILS** WELL CONSTRUCTION DETAILS CONDITIONS Type of protective cover Compression - pent. bolt 0.0 9.4 Depth of Roadway Box below ground surface 0.0 ft-0 0.2 9.2 8.9 Depth of top of riser below ground surface FILL 0.5 0.2 ft 3.0 6.4 5.0 4.4 ---- 5.0 Roadway Box Type of protective casing 7.0 2.4 COHESIVE FILL 0.9 ft 9.0 Length -10 4.0 in. ORGANIC Inside diameter **DEPOSITS** 0.9 ft 15 15.0 Depth of bottom of Roadway Box **ESTUARINE** 17.0 -7.6 17.0 **DEPOSITS** Type of riser pipe Schedule 40 PVC -20 Inside diameter of riser pipe 2.0 in. -25 Depth of bottom of riser pipe 7.0 ft Type of Seals Top of Seal (ft) Thickness (ft) -30 MARINE BOYNTON YARDS\GINT\130771-002-TB.GPJ DEPOSITS 0.0 0.5 Concrete 3.0 2.0 Bentonite -35 40 Diameter of borehole 4.5 in. Depth to top of well screen 7.0 ft Type of screen Machine slotted Sch 40 PVC G:\130771 -GLACIOMARINE **DEPOSITS** 50 0.010 in. Screen gauge or size of openings 52.0 INSTALLATION REPORT-07-1 2.0 in. Diameter of screen -55 Type of Backfill around Screen _ #1 Filter sand -60 Depth to bottom of well screen 17 ft WEATHERED BEDROCK Not used Ν Bottom of silt trap 65 69.2 ft Depth of bottom of borehole 69.2 COMMENTS:

Н	ALE	RIC	Н			Т	EST	BORING REPOR	RT		I	Во	rin	g N	No.		(C6		
Clie	ject ent ntracto	DL	J REA	L EST.	ATE (CAPITA		TNERS			Sh Sta		No	0. 1 24	077 of Au	1 igus	st 20			
			(Casing	San	npler	Barrel	Drilling Equipment	and Procedures			iller			1 B	-				
Тур	е			HW		s		•	ile Drill B57 Truck		Н8	kA F	Rep).	S.	Sha	ay			
Insid	de Dia	meter	(in.)	4	13	3/8		Drill Mud: None				eva itun	tion n	1			est.) D 8			
Han	nmer V	Veight	(lb)	140	14	40	-						ion	S	ee I					
Han		all (in	.)	30	3	-	-													
£	Sampler Blows per 6 in.	No.	HW S - Rig Make & Model: Mobile Drill B57 Bit Type: Roller Bit Drill B57 Bit Type: Roller Bit Drill B57 Bit Type: Roller Bit Drill Mud: None Casing: HW Drive to 10.0 ft Hoist/Hammer: Winch Automatic Hit Hoist/H	TION AND DESCRIPTION	N	-	ivel	-	San	p			ield σ	Te	st_					
Depth (ft)	ler B r 6 ir	ple l	mb oth (keadi	Syr	ratun Jang					arse	e e	Coarse	diun	e	sei	incy	hnes	city	aft)
De	amp	Sam & Re	Sa Del) OIC	SOS	# C &					% Coarse	% Fine	% C	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	16 13	S1 20					Mediu				5	5	_	_	30	_		•		0,
-	10 13																			
-	15 11	S2 18		_	SP	7.9			graded SAND (SP), mps	6.0		10	10	35	45	_		_		
	33		eter (in.) HW S	-																
- - 5 -	3 S3 5.0 4 2 7.0 5 9 8 S4 7.0 10 12 9.0 1.8 SP							•												
-									1. One extra attempt with	3.0 in.										
-		2 7.0 spoon at 5.0 to 7.0 ft no recovery. S4 7.0 1.8 SP 7.0 S4 top 6.0 in.: Medium dense dark brown poorly graded S2 mps 1.0 mm, no structure, organic odor, wet, trace peat fit -ESTUARINE DEPOSITS-S4 bottom 6.0 in.: Stiff olive brown and olive gray lean CL					own poorly graded SAN	D (SP),				25	70	5						
-	8	12	spoon at 5.0 to 7.0 ft no recovery. Spoon at 5.0 to 7.0 ft no recovery.													100				-
-	5								<i>\(\cdot\)</i>	. , .										
- 10 - -	9 12 17			spoon at 5.0 to 7.0 ft no recovery. 2.9 7.0 S4 top 6.0 in.: Medium dense dark brown poorly graded S mps 1.0 mm, no structure, organic odor, wet, trace peat fi -ESTUARINE DEPOSITS- S4 bottom 6.0 in.: Stiff olive brown and olive gray lean C mps < 0.5 mm, irregular coloring, no odor, wet, trace or fibers Very stiff olive brown lean CLAY (CL), mps < 0.1 mm, structure, no odor, wet Stiff olive brown lean CLAY (CL), mps < 0.1 mm, no st												100	N	М	Н	V
-	3 5	8 5 0.1 CL 8.0 S2 m fill 9 S5 10.0 0.1 CL 8th 17 21						. , , ,	1	,						100				
	8	Spoon at 5.0 to 7.0 ft no recovery. Spoon at 5.0 to 7.0 ft no recovery.	2.5 tsi																	
-								-MARINE DE	POSITS-											
- 15 - -	7 8		CL		Similar	to above, medium stiff								100						
-	4 5	Similar to above, stiff State		PF	1.5 tsf															
									PF	1.0 tsf										
-						-9.1 19.0		BOTTOM OF EXPLO		2.0 101										
		Wa	ater Le	evel Dat				Sample ID	Well Diagram			S	Sum	ıma	ry					
D	ate	e Time Elapsed Depth (ft) to: O - Open End Rod Time (hr.) Bottom Bottom Water T - Thin Wall Tube			Riser Pipe Screen	Overl			`	,	1	9.0)							
			111110				vvater	U - Undisturbed Sample	Filter Sand	Rock			(ft	,	0	-				
								1	Grout Concrete Bentonite Seal	Samp) .	S	8	(C6			
Field	d Tests	:	1						ity: N - Nonplastic L - Lovength: N - None L - Low							Verv	Hia	h		
†No	te: Ma			size is	determ	nined by	direct ob	servation within the limitation	s of sampler size.							. J. y	y			_

Н	ALE	PRICH	1				TEST	BORING REPORT		Во	rin	ıg l	No.]	E1	(0	W	Γ,
Pro Clie Cor	-	DLJ	RE	ON YAI AL EST IERN DI	ATE	CAPI	TAL PA	RTNERS	Sh Sta	neet art	No			3 ugu	st 2			
				Casing	San	npler	Barre	Drilling Equipment and Procedures		nish iller		Joh		-				
Тур	е		I	HW NW	,	S		Rig Make & Model: Mobile Drill B57 Truck	Н8	&A I	Rep) .	S.	Sha	ay			
Insid	de Dia	meter (i	n.)	4 - 3	1 :	3/8		Bit Type: Roller Bit Drill Mud: None		eva atun		1		2.1 AV				
Ham	nmer V	Veight (lb)	140	1	40	-	Casing: HW Drive to 14.0 ft NW to 49.0 ft Hoist/Hammer: Winch Automatic Hammer	_	cat		S	ee l					
Han		all (in.)		30	3	80	-	PID Make & Model: MiniRAE 2000 10.6 eV										
€	Slows n.	No. (ir.)	<u>ə</u> €	dings	mbol	gram	He He	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel		San ⊱				ield g		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions	Coarse	Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
0 -	San	Sa & I			SN	We		GEOLOGIC INTERPRETATION)	%	% ₽	%	%	% F	%	ä	ĭ	<u>_</u>	
0 7	12	S1	0.5		SP	i.:	11.9 0.2	-ASPHALT- Dense yellow brown poorly graded SAND with gravel (SP),	5	15	15	35	25	5				
	23 19	10	2.0					mps 3.0 cm, no structure, no odor, dry										
	16 10	S2 12	2.0	+	SP			S2 top 6.0 in.: Similar to above, except medium dense -FILL-	10	10	15	35	30					
	8 11	12	4.∪		SM		9.1 3.0	S2 bottom 6 in.: Medium dense black silty SAND (SM), mps	+-	+-	10	20	35	35	-	-	-	
	5	S3	4.0	\dashv				8.0 mm, no structure, no odor, moist, trace brick Loose white/gray/black 100% ash/cinders										
5 -	3 2 2	12	6.0															
	3 6	S4 15	6.0 8.0	7	SM			Medium dense dark brown silty SAND (SM), 2.0 cm, no structure, no odor, wet, trace	5	5	10	10	40	30				
	7 4		0.0					-FILL-										
	4 4	S5 12	8.0 10.0	1	CL		4.1 8.0	Stiff yellow brown sandy lean CLAY (CL) mps 2.0 cm, no structure, no odor, moist	†-	5	5	10	20	60				
10 -	5 5						2.1	-COHESIVE FILL-										
10 -	2 2		10.0 12.0		OL/ OH		2.1 10.0	Loose soft dark brown disturbed ORGANIC SOIL (OL/OH) with peat fibers										
	2 1							Note: No recovery first attempt used 3.0 in. diameter spoon for 6.0 recovery.										
	1 2 2		12.0 14.0	1			-0.9	-ORGANIC DEPOSITS- No recovery	╽.	<u> </u>	<u> </u>	<u> </u>	L.				L	
15 -	3				OL/ OH		13.0	Soft light olive gray ORGANIC SOIL (OL/OH), mps < 0.1 mm,no structure, no odor, moist, trace peat fibers					5	95				
-								-ORGANIC DEPOSITS-										
							-5.4 17.5		+									
								-MARINE DEPOSITS-										
	1		19.0 21.0		CL			Very soft olive gray lean CLAY (CL), mps < 0.1 mm, occasional silt partings, no odor, wet						100	N	L	Н	1
20 -		Wat	er L	evel Dat		-		Sample ID Well Diagram		<u>'</u>	Sun	nma	iry				_	
D	ate	Time			ottom	th (ft Botto	m	T Thin Wall Tube	rbur		•	•	(60.2	2			
Q/1	0/17	1345			Casing 49	of Ho	ole vvate	U - Undisturbed Sample Filter Sand Roo	k Co aples		l (f	t) Si	16	-				
0/1	U/1/	1343	U	23	オ ブ	00.2	2 11.2	S - Splitspoon Sample Grout Grout	ring		ο.	.		E1 ((O)	W)		
Field	d Tests	:						/ N - None						. ,		.b		

Second S			Boring No. File No. Sheet No.	130771-002
-MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -Marine DEPOSITS- Similar to S9 above	RIPTION	ON AND DESCRIPTION	Gravel San	nd Field Tes
-MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -MARINE DEPOSITS- -Marine DEPOSITS- -Marine DEPOSITS- -Marine DEPOSITS- -Marine DEPOSITS- -Marine DEPOSITS- -Marine DEPOSITS- -Mote: Stratum change estimated based on change in drilling effort at 33.5 ft. Medium dense olive gray sity SAND with gravel (SM), mps 2.5 mm, no structure, no odor, wet -25.4 -7 S12 39.0 -7 S12 39.0 -7 S12 39.0 -7 S12 39.0 -7 S12 39.0 -7 S12 39.0 -7 S12 39.0 -25.4 -37.5 -GLACIOMARINE DEPOSITS- -GLACIOMARINE DEPOSITS- -GLACIOMARINE DEPOSITS- Note: Possible boulder 42.5 to 43.5 ft. Dense olive gray sity SAND with gravel (SM) mps 2.0 cm, moderately well bonded, no odor, moist Note: Possible boulder 42.5 to 43.5 ft.	ons	ptional descriptions	% Coarse % Fine % Coarse % Medium	% Fines % Fines Dilatancy Toughness Plasticity
30 - 1	nm, no			100 N L H
SM SM SM SM effort at 33.5 ft. Medium dense olive gray silty SAND with gravel (SM), mps 2.5 mm, no structure, no odor, wet				100 N L H
To S12 39.0 and SM Dense olive gray silty SAND with gravel (SM) mps 2.0 cm, moderately well bonded, no odor, moist Note: Possible boulder 42.5 to 43.5 ft. Dense olive gray silty SAND with gravel (SM) mps 2.0 cm, moderately well bonded, no odor, moist Dense olive gray silty SAND with gravel (SM), mps 3.0 cm, well bonded, no odor, moist			10 15 10 10	20 35
40 - 17		DEPOSITS-	-+++	++++
Note: Possible boulder 42.5 to 43.5 ft. SM Dense olive gray silty SAND with gravel (SM), mps 3.0 cm, well bonded, no odor, moist	2.0 cm,		10 15 10 15	25 25
45 - 24 13 46.0		ft.		
	s 3.0 cm,	ravel (SM), mps 3.0 cm,	10 10 10 10	20 40
16 S14 49.0 SM Dense olive gray silty SAND with gravel (SM) mps 3.0 cm,	3.0 cm,	ravel (SM) mps 3.0 cm,	10 10 10 10	20 40

		PRIC	Н					T BORING REPORT	F	ile	ing No. et N	1	307	71-0 of	E1 (002 3	OW	<i>V</i>)
£	SWC	ۇ <u>(</u> -	 ₽	sbı	loq	аШ	(ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gr	avel	,	San	d		Fi		Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
- 50 -	9 36 19	9	51.0					occasional irregular fine sandy silt pockets, no odor, moist									
								-GLACIOMARINE DEPOSITS-									
	12	S15	54.0				-41.9 54.0	TOP OF WEATHERED BEDROCK 54.0 FT Dense light gray completely weathered rock as residual soil									_
55 -	16 15 16	10	56.0					-WEATHERED BEDROCK-									
60 -	28 54 100/2",	S16 12	59.0 60.2				-48.1	Very dense light gray completely to severely weathered rock, rock fabric present, bedding plains apparent ARGILLITE									
	<u> 10072</u> 7						-48.1 60.2	BOTTOM OF EXPLORATION 60.2 FT Note: Split spoon refusal at 60.2 ft.									
								Note: PID reading not recorded due to instrument malfunction.									

GROUNDWATER OBSERVATION WELL E1 (OW) Well No. INSTALLATION REPORT Well Diagram Project **BOYNTON YARDS** File No. 130771-002 SOMERVILLE, MA Riser Pipe Date Installed 10 Aug 2017 Location Screen H&A Rep. S. Shay DLJ REAL ESTATE CAPITAL PARTNERS Client Filter Sand Location See Plan Contractor NORTHERN DRILL SERVICE, INC. Cuttings Grout Driller John Beirholm Concrete Ground El. 12.1 (est.) Datum NAVD 88 Bentonite Seal 11.2 ft Initial Water Level (depth bgs) SOIL/ROCK ELEVATION (ft.) WELL GRAPHIC DEPTH (ft.) **DETAILS** WELL CONSTRUCTION DETAILS CONDITIONS Type of protective cover Compression - pent. bolt 0.0 12.1 Depth of Roadway Box below ground surface 0.0 ft-0 ASPHALT 0.2 0.3 FILL 0.5 11.6 Depth of top of riser below ground surface 0.3 ft 3.0 3.0 9.1 4.0 8.1 -5 Roadway Box Type of protective casing 0.9 ft Length COHESIVE FILL 4.0 in. 10.0 Inside diameter 0.9 ft Depth of bottom of Roadway Box <u>15.</u>0 -2.9 15 ORGANIC Type of riser pipe Schedule 40 PVC **DEPOSITS** 17.5 Inside diameter of riser pipe 2.0 in. -20 Depth of bottom of riser pipe 5.0 ft -25 MARINE Type of Seals Top of Seal (ft) Thickness (ft) **DEPOSITS** G:\130771 - 1 BOYNTON YARDS\GINT\130771-002-TB.GPJ 0.0 0.5 Concrete 30 3.0 1.0 Bentonite -35 Diameter of borehole 4.5 in. Depth to top of well screen 5.0 ft -40 Type of screen Machine slotted Sch 40 PVC 0.010 in. Screen gauge or size of openings 45 GLACIOMARINE INSTALLATION REPORT-07-1 **DEPOSITS** 2.0 in. Diameter of screen Type of Backfill around Screen #1 Filter sand -50 Depth to bottom of well screen 15 ft 54.0 Not used β -55 Bottom of silt trap WEATHERED 60.2 ft Depth of bottom of borehole BEDROCK 60.2 COMMENTS:

H	ALE	Y RIC	н				TES	BORING REPORT Boring No. E6 (OW)
Proje Clien Cont		DL	J REA	AL EST	ATE	CAPI	ERVILI TAL PA /ICE, IN	RTNERS Sheet No. 1 of 3 Start 21 August 2017
			(Casing	San	npler	Barre	
Туре				HW		S		Rig Make & Model: Mobile Drill B57 Truck H&A Rep. S. Shay
		meter (Veight	`	4 140		3/8 40	 -	Bit Type: Roller Bit Drill Mud: None Casing: HW Drive to 10.0 ft Elevation 10.9 (est.) Datum NAVD 88 Location See Plan
		all (in.	.)	30	3	30	-	Hoist/Hammer: Winch Automatic Hammer PID Make & Model: MiniRAE 2000 10.6 eV
€.	Blows in.	No.	£ e	ings	loqu	ram	ر e ارft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Gravel Sand Field Test φ μ μ μ μ μ μ μ μ μ
Depth (ft)	Sampler B per 6 ir	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) geographics Structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) geographics Structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)
0	20 16 19 15	S1	0.0 2.5		SM	^ ··········///////////////////////////		Dense black silty SAND with gravel (SM), mps 2.5 cm, no structure, no odor, dry, 5% cinders, trace concrete, trace brick
	13 11 13 12	S2	2.5 5.0	_	SM			Similar to above, except 35% red brick pieces 5 10 15 15 35 20
5	10 5 4 10	S3 4	5.0 7.0	_				Note: Used 3.0 in. diameter 0.0 to 5.0 ft to increase sample volume.
	9 6 5	S4 18 S4A	7.0 8.0 8.0		SP- SM		2.4	Medium dense dark brown poorly graded SAND with silt (SP-SM), mps 2.0 mm, no structure, slight petroleum-like odor, wet, trace brick
.	10		9.0		CL		2.4 8.5	Soft stiff olive gray/yellow brown lean CLAY (CL)
10	6 11 14 18	S5 24	10.0 12.0	_	CL			Very stiff olive brown lean CLAY (CL), mps < 0.1 mm, blocky, structure, no odor, moist PP 4.5 tsf
	10 13 11 9	S6 24	12.0 14.0	_	CL			Similar to S5 above PP 4.0 tsf -MARINE DEPOSITS-
15	2 3 2	S7 24	15.0 17.0	0.1	CL			Note: 3.0 in spoon to 15.0 ft to recover environmental. Medium stiff olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet PP 1.5 tsf
	5 4 3 4 3	S8 19	17.0 19.0	0.1	CL			Similar to S7 above PP 1.5 tsf
T				1				Note: 3.0 in. spoon to 20.0 ft to recover environmental sample.
20		Wa	ater Le	vel Da	ita			Sample ID Well Diagram Summary
Da		Time	Elap	sed (hr.) E	Dep Bottom Casing	of Ho	m ole Wate	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample Riser Pipe Screen Filter Sand Filter Sand Rock Cored (ft) - Rock Cored (ft) -
8/23 8/24	- 1	0650 0658		5.0	10.0 10.0	15.0 59.2	2 11.2	Bentonite Seal Boring No.
Field				Tough	néss:	<u>L - Low</u>	/ M - Med	/ N - None Plasticity: N - Nonplastic L - Low M - Medium H - High ium H - High V - Very High
†Note	e: Ma							observation within the limitations of sampler size. visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

Н	ALF	Y	L				TES	T BORING REPORT	F	i le l	No.	1	307	71-0	02	OV	٧)	
				σ	T =		<u> </u>		-	hee	_	lo. San		of		ield	To	_
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse			% Fines		Toughness	Plasticity	Т
20 -	1 1 2 2	S9 24	20.0 22.0	0.0	CL			Soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet						100		L	Н	_
	1 1 2 3	S10 24	22.0 24.0	0.3	CL			Similar to S9 above PP 0.75 tsf						100	N	L	Н	
25 -	1 2 2 3	S11 24	25.0 27.0	0.3	CL			Similar to above PP 1.5 tsf						100	N	L	Н	
30 -	1 1 1	S12 24	30.0 32.0	0.5	CL			Very soft olive gray lean CLAY (CL), mps < 0.1 mm, occasional silt partings, no odor, wet PP 0.1 tsf						100	L	н	Н	
	1 2 2 3	S13 24	32.0 34.0	0.0	CL			Soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet PP 0.5 tsf						100	N	L	Н	
35 -	1 1 2 3	S14 24	34.0 36.0	0.4	CL			Similar to above PP 0.5 tsf						100	N	L	Н	
								-MARINE DEPOSITS-										
40 -	1/12	S15 24	39.0 41.0	0.1	CL			Similar to above, very soft						100	N	L	Н	
45 –	1 18 100/2	S16 14	44.0 46.0	0.1	CL GP		-34.1 45.0	Soft lean CLAY (CL) with gravel sized rock fragments Note: 13.0 in. probable boulder indicated by drilling effort 45.2 to 46.3 ft.		5	5	5	5	100 80				_
								-GLACIOMARINE DEPOSITS-										
	13	S17	49.0		GP		-38.6	S17 top 6.0 in.: Dense olive gray to olive brown poorly graded										

		PRIC	Н					T BORING REPORT	l F	ile	ing No. et N	1	307	71-0 of	E6 (0 02 3	OW)
	S N	o (:		gg	log	E	(#	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	avel	_	San			Fi		Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
50 -	27 29 42	18	51.0	0.0			49.5	GRAVEL (GP), mps 2.5 cm, no structure, no odor, wet TOP OF BEDROCK 49.5 FT S17 bottom 12.0 in.: Very dense gray highly weathered rock,									
								sample breaks into angular fine gravel sized piece									
55 -	100/5	\S18 _5	54.0 54.4	0.0				Very dense gray ARGILLITE, shattered angular fine gravel sized pieces									
								-BEDROCK-									
	100/2	S19 2	59.0 59.2				-48.3 59.2	Very dense light gray ARGILLITE, rock fabric present BOTTOM OF EXPLORATION 59.2 FT Note: spoon refusal at 59.2 ft.	-								+
								Note: spoon retusar at 59.2 ft.									

GROUNDWATER OBSERVATION WELL **E6 (OW)** Well No. INSTALLATION REPORT Well Diagram Project **BOYNTON YARDS** File No. 130771-002 SOMERVILLE, MA Riser Pipe Date Installed 23 Aug 2017 Location Screen H&A Rep. S. Shay DLJ REAL ESTATE CAPITAL PARTNERS Client Filter Sand Location See Plan Contractor NORTHERN DRILL SERVICE, INC. Cuttings Grout Driller Carl Beirholm Concrete Ground El. 10.9 (est.) Bentonite Seal Datum NAVD 88 5.7 ft Initial Water Level (depth bgs) SOIL/ROCK ELEVATION (ft.) WELL GRAPHIC DEPTH (ft.) **DETAILS** WELL CONSTRUCTION DETAILS CONDITIONS Type of protective cover Compression - pent. bolt 0.0 10.9 Depth of Roadway Box below ground surface 0.0 ft-0 0.3 10.6 0.5 10.4 Depth of top of riser below ground surface 0.3 ft 1.8 9.1 FILL 3.0 7.9 -5 Roadway Box Type of protective casing Length 0.9 ft 4.0 in. 10 Inside diameter 0.9 ft Depth of bottom of Roadway Box 15.0 -4.1 -15 Type of riser pipe Schedule 40 PVC Inside diameter of riser pipe 2.0 in. -20 Depth of bottom of riser pipe 5.0 ft -25 Type of Seals Top of Seal (ft) Thickness (ft) MARINE G:\130771 - 1 BOYNTON YARDS\GINT\130771-002-TB.GPJ 0.9 0.0 **DEPOSITS** Concrete 0.5 Bentonite 1.8 -30 1.2 Diameter of borehole -35 4.5 in. Depth to top of well screen 5.0 ft -40 Type of screen Machine slotted Sch 40 PVC 0.010 in. Screen gauge or size of openings 45.0 INSTALLATION REPORT-07-1 -45 2.0 in. Diameter of screen GLACIOMARINE **DEPOSITS** Type of Backfill around Screen _ #1 Filter sand 49.5 -50 Depth to bottom of well screen 15 ft Not used > BEDROCK Bottom of silt trap -55 59.2 ft Depth of bottom of borehole - 59.2 COMMENTS:

HAL	T ORIC	Н			Т	EST	BORING REPORT Boring No.	F4	
Project Client Contract	DL	J REA	L EST	ATE	CAPITA	RVILLE AL PAR CE, INC	TNERS Sheet No. 1 of 3 Start 16 August 2		
		(Casing	San	npler	Barrel	Drilling Equipment and Procedures Finish 17 August 2 Driller John Beirholn		
Туре			HW	,	S		Rig Make & Model: Mobile Drill B57 Truck H&A Rep. S. Shay		
Inside Dia	ameter ((in.)	4	1 3	3/8		Bit Type: Roller Bit Elevation 10.5 (es Drill Mud: None Datum NAVD 8	t.)	
Hammer '	Weight	(lb)	140	14	40	-	Casing: HW Drive to 15.0 ft Hoist/Hammer: Winch Automatic Hammer		
Hammer	•	.)	30	3	0	-	PID Make & Model: MiniRAE 2000 10.6 eV		
Sampler Blows per 6 in.	No.	æ Ê	Readings (ppm)	nbol	Stratum Change Elev/Depth (ft)	\	/ISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	ield Te	st_
Depth (ft)	ec. (Sample Depth (ft)	Read ppm)	S Syl	ratur nang Dept		(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	hnes	gth
Samp	Sample No. & Rec. (in.)	SS e	PID F	USCS Symbol	Elev C		(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	Toughness Plasticity	Strength
6 8 6	S1 24	0.0 2.5		SM		Mediur	m dense brown to dark brown silty SAND with gravel (SM), 0 cm, no structure, no odor, dry, trace brick		
4 3 2 3	S2 20	2.5 5.0		SM		Similar	r to above, except loose, occasional clayey pockets -FILL-		
10 4 6 6	S3 24	5.0 7.5		SC	5.5 5.0		yellow brown clayey SAND with gravel (SC), mps 3.0 cm, no re although appears to be disturbed		
4 3 2 3	S4 18	7.5 10.0		SC		Similar	r to S3 above 10 10 10 15 20 35 -COHESIVE FILL-		
10 2 3 1 1	S5 24	10.0 12.5		OL/ OH	0.5 10.0		ay sandy ORGANIC SOIL (OL/OH), mps 3.0 mm, frequent ar peat pockets, slight organic odor, wet -ORGANIC DEPOSITS-		
2 2 4 5	S6 24	12.5 15.0		OL/ OH	-3.5 14.0	1.0 mn	10.0 in.: Soft gray ORGANIC SOIL with sand (OL/OH), mps n, no structure, no odor, wet		
				CL	14.0		tom 14.0 in.: Medium stiff olive brown lean CLAY (CL), mps 5 95 mm, blocky structure, no odor, moist		
15 2 2 3	S7 24	15.0 17.0	0.9	CL		1	m stiff olive brown lean CLAY (CL), mps < 0.1 mm, blocky re, no odor, moist PP 1.5 tsf	нн	v
2 4 4 3 2	S8 24	17.0 19.0	0.6	CL		1	-MARINE DEPOSITS- m stiff olive brown lean CLAY (CL), mps <0.1 mm, blocky re, no odor, moist PP 0.3 tsf		
1 1	S9 20	19.0 21.0	0.3	CL		Soft oli		МН	v
	Wa		evel Dat		H- 700 :		Sample ID Well Diagram Summary		
Date	Time	Elap	(hr.) Bo	Dep ottom Casing	th (ft) to Bottom of Hole	o: Water	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample Riser Pipe Screen Filter Sand Rock Cored (ft)		
8/17/17	1235	0.	5	15.0	56.0	6.1	S - Splitspoon Sample G - Geoprobe Cuttings Grout Concrete Bentonite Seal Samples S16 F4		
Field Tests	s:					S - Slow		nh.	
†Noto: Mr	aximum ı		size is	detern	nined by	direct ob	bry Strength. N-None E-Low M-Medium H-High V-Very File servation within the limitations of sampler size. sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	41.1	

		PRIC	Н				EST BORING REPORT	F	ile	ing No. et N		130	771-(of	002	F4		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	ও Coarse	% Fine	, se	Sar Wedinu %	$\overline{}$	% Fines	atancy	Longhness		
20	2 2	0) &		Δ.	<u> </u>	Ш	PP 0.5 tsf	%	%	%	%	%	%		-	_	
-							-MARINE DEPOSITS-										
- 25 -	1 1 2 3	S10 24	24.0 26.0	0.6	CL		Soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet PP 0.3 tsf						100	N	L	Н	
-	1 2	S11 13	29.0 31.0	0.0	CL		Similar to above PP 0.5 tsf						100	N	L	н	
- 30 -	3		31.0														
- - 35 - -	1 1 2 3	S12 19	34.0 36.0	0.0	CL		Soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet PP 0.5 tsf						100	N	L	Н	
- - - 40 -	1 2 2 2	S13 24	39.0 41.0	0.1	CL		Soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet PP 0.8 tsf						100	N	L	н	
- - - 45 -	12 15	S14 14	44.0 46.0	0.0	CL CL	-32.5 43.0	Hard gray sandy lean CLAY with gravel (CL), mps 2.5 cm, moderately bonded, no odor, wet	5	5	5	10	0 10	65				
- - -	17 18						-GLACIOMARINE DEPOSITS-										
-	6	S15	49.0	0.0	CL		Stiff gray sandy lean CLAY (CL), mps 3.0 cm, no structure, no	5	5	5	10) 10	65				

Н	ALE	PRIC	Н			TI	EST BORING REPORT	F	ile	No.	1	307	71-0 of	02	'4	
				Sg	lo	(£	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	avel		o. San		OT		eld	Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
50 -	6 8 9	18	51.0				odor, wet									
							-GLACIOMARINE DEPOSITS-									
						42.2	TOP OF WEATHERED BEDROCK 53.8 FT									
	19	S16	54.0			-43.3 53.8	Note: Abrupt change in drilling effort at 53.8 ft. Very dense light gray completely weathered rock, rock fabric present									
55 -	32 36	12	56.0				-WEATHERED BEDROCK-									
	41					-45.5 56.0	BOTTOM OF EXPLORATION 56.0 FT	\vdash								
		1	1	1	i			1	1	i .					- 1	

H&A-TEST BORING WITH PERM PID COLUMN HA-LIB09-BOS.GLB HA-TB+CORE+WELL-09 W FENCE.GDT G:\130771 - 1 BOYNTON YARDS\GINT\130771-002-TB.GPJ

NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

Boring No.

F4

Н		Y	н			Т	EST	BORING REPORT Boring No. G3	3
Clie	ject ent ntracto	DL	J REA	AL ESTA	ATE (CAPITA	RVILLE AL PAR CE, INC	Start 11 August 2017	
			(Casing	Sam	npler	Barrel	Drilling Equipment and Procedures Finish 14 August 2017 Driller John Beirholm	,
Тур	е		Н	W NW		S		Rig Make & Model: Mobile Drill B57 Truck H&A Rep. S. Shay	
Insid	de Dia	meter ((in.)	4 - 3	13	3/8		Bit Type: Roller Bit Elevation 11.4 (est.) Drill Mud: None Datum NAVD 88	
	nmer F	Veight all (in	` ′	HW NW S 4 - 3		0	-	Casing: HW Drive to 14.0 ft NW to 52.0 ft Hoist/Hammer: Winch Automatic Hammer PID Make & Model: MiniRAE 2000 10.6 eV	
(ft)	3lows n.	S (ii)	<u>=</u>	dings)	mbol	т Э	,	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Test
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Read (ppm	USCS Sy	Stratul Chang Elev/Dept		(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) STATEMENT OF THE PROPERTY OF THE PROPERT	Plasticity Strength
- 0 -	0,					11.2 0.2		-ASPHALT-	
-	8 6 9	S1 10	0.5 2.0		SP	0.2		um dense yellow brown poorly graded SAND (SP), mps 9.0 10 10 10 60 15 5 no structure, no odor, dry	
_	6 7 9	S2 14	2.0 4.0		SM			um dense black silty SAND (SM), mps 2.5 mm, no structure, or, moist, trace ash and cinders, trace brick	
- 5 -	5 4 2	S3 10	4.0 6.0				Loose	white/gray/black ash and cinders, trace glass -FILL-	
_	8 5	S4 9	6.0		CL	5.4 6.0		ellow brown sandy lean CLAY (CL), mps 2.5 cm, no 5 5 10 10 20 50 ure, no odor, moist	++
-	4 7		8.0					-COHESIVE FILL-	
_	2 2 2 2	S5 9	8.0 10.0					soft dark gray SILT/SAND mix (SP/ML), mps 1.5 cm, no ure, no odor, wet	
- 10 - -	2 2 2 2	S6 12	10.0 12.0	-		1.4 10.0		ray with black staining sandy ORGANIC SOIL (OL/OH), mps m, appears to be disturbed, no odor, wet, trace gravel -ORGANIC DEPOSITS-	
-	4 5 3	S7 20	12.0 14.0	-	CL	-0.6 12.0		um stiff olive brown lean CLAY (CL), mps < 0.1 mm, blocky looket look 100 N H	H V
	6							PP = 2.0 tsf	
- - 15 -	4 4 4	S8 24	14.0 16.0		CL		Simila	ar to above $PP = 1.4 \text{ tsf}$	н
-	3								
-								-MARINE DEPOSITS-	
- 20 -	2 2	S9 8	19.0 21.0				Soft ol odor, v		HV
D	ate	Time	Elap	sed Bo	Dep	th (ft) to Bottom of Hole	o: Water	Sample ID Well Diagram Summary O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample Well Diagram Riser Pipe Screen Filter Sand Rock Cored (ft) - Rock Cored (ft) -	
8/1	4/17	0708	64	.0 1	4.0	41.0	9.5	S - Splitspoon Sample G - Geoprobe Concrete Bentonite Seal	
Field	d Tests	:	1					N - None Plasticity: N - Nonplastic L - Low M - Medium H - High	
†No	te: Ma			size is o	determ	ined by	direct ob	bservation within the limitations of sampler size. isual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	

Н		PRIC	H			T	EST BORING REPORT	l F	ile	No	y N o.	1307	71-(of	002	33		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION (Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions	Coarse D	Eine	ď	Sar Wedinm		% Fines		Toughness ai	Plasticity aL	Ī
- 20 -	2 2	S &	•••	∃ ∃	Sn	E	GEOLOGIC INTERPRETATION)	%	%	%	- %	%	%	iii	Tor	Pla	=
	1 1 1 1	S10 24	24.0 26.0		CL		-MARINE DEPOSITS- $ \label{eq:clay} $						100	N	L	н	
- - 30 – -	2 2 3 3 3	S11 18	29.0 31.0		CL		Similar to S10 above, except medium stiff $\label{eq:PP} PP = 0.5 \; tsf$						100	N	М	Н	
- 35 –	3 3 4 4	S12 20	34.0 36.0		CL	-25.6	Medium stiff olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet Note: No recovery first attempt, used 3.0 in., diameter split spoon same interval with 20.0 in. recovery.						100	N	M	н	
- - 40 -	8 10 6 7	S13 15	39.0 41.0		SC	37.0	Note: Stratification change estimated based upon change in drilling effort at 37.0 ft. Medium dense olive gray clayey SAND (SC), mps 2.0 cm, no structure, no odor, wet -GLACIOMARINE DEPOSITS-	5	5	15	5 20	20	35				
- - 45 - -	22 52 49 48	\$14 12	44.0 46.0		GC	-30.6 42.0 -35.6 47.0	Very dense olive gray clayey GRAVEL with sand (GC), mps 2.8 cm, no structure, no odor, wet Note: NW casing required after S14.	20	40) 1() 5	10	15				_
	15	S15	49.0		SC	47.0	Dense olive gray clayey SAND with gravel (SC), mps 3.0 cm, no	10	20) 10) 10	10	40				

Н		Y	H			T	EST BORING REPORT	F	ile	ing No.	1	307′ 3	71-0	02	3 3	
	Sampler Blows per 6 in. Sample No. & Rec. (in.) Sample Depth (ft) PID Readings (ppm)				<u></u>	£		_	avel	_	o. San		OI		eld	Tes
€	18 15 51.0			ymb	ge th (f	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	_	$\overline{}$						S		
Depth (ft)	Sampler per 6	Sample & Rec.	Sam _l Depth	PID Rea (ppn	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
50 -		15	51.0				structure, no odor, wet									
-	29						-GLACIOMARINE DEPOSITS-									
						-40.6 52.0	Note: Abrupt change in drilling effort at 52.0 ft.	+-							- +	
	100	S16	54.0		GP-	-43.1 54.5	Very dense gray poorly graded GRAVEL with clay and sand (GP-	15	65	5	5		10			
		2 /	54.5		GC	54.5	GC), mps 2.5 cm, no structure, no odor, wet BOTTOM OF EXPLORATION 54.5 FT Note: Split spoon refusal at 54.5 ft.									
							Note: PID readings not recorded due to instrument malfunction.									

H&A-TEST BORING WITH PERM PID COLUMN HA-LIB09-BOS.GLB HA-TB+CORE+WELL-09 W FENCE.GDT G:\130771 - 1 BOYNTON YARDS\GINT\130771-002-TB.GPJ

Н		RICI	н			Т	EST	BORING REPORT Boring No. HA17-1
Clie	ject ent ntracto	DL	J REA	AL EST	ATE	CAPITA	RVILLE AL PAR CE, INC	Sheet No. 1 of 3 Start 29 August 2017
			(Casing	San	npler	Barrel	Drilling Equipment and Procedures Finish 29 August 2017 Driller Carl Beirholm
Тур	е			HW	;	S		Rig Make & Model: Mobile Drill B57 Truck H&A Rep. S. Shay
Insid	de Dia	meter ((in.)	4	1 3	3/8		Bit Type: Roller Bit Elevation 8.9 (est.) Drill Mud: None Datum NAVD 88
Han	nmer V	Veight	(lb)	140	14	40	-	Casing: HW Drive to 10.0 ft
Han	nmer F	all (in.	.)	30	3	0	-	Hoist/Hammer: Winch Automatic Hammer PID Make & Model: MiniRAE 2000 10.6 eV
£	Blows in.		o£	Readings (ppm)	loqu	Stratum Change Elev/Depth (ft)		VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION Gravel Sand Field Tes
Depth (ft)	ler B r 6 in	ple I	Sample Depth (ft)	keadi	Syr	atun ange Septh		(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions SECOLOGIC INTERPRETATION)
Deg	Sampler E per 6 i	Sample No. & Rec. (in.)	Sa Der	PID R	USCS Symbol	12 P.		(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) (Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION) (Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)
0 -	S	-		Ш.		8.7 0.2		-ASPHALT-
	24 14 12 19	S1 18	0.5 3.0	-	SM	0.2	semi-c	um dense black silty SAND with gravel (SM), mps 3.0 cm, cemented, platey structure, no odor dry, 5-10% cinders, trace trace fibers
	20 25 19	S2 _24/	2.5 5.0		SM		Similar	rr to above, except dense 10 10 10 15 25 30
	18							-FILL-
5 -	-	S3	5.0	0.9	SC/	3.9 5.0		30.0 in. drive to reach environmental target depth. olive brown clayey SAND (SC) with lean CLAY mixed (CL), 5 5 10 10 20 50
	5 5 5 6	20	7.0	0.9	CL	3.0		.0 cm, disturbed, no odor, wet, trace shells, trace brick
	9 6 3	S4 18	7.0 9.0	0.9	SC/ SM			gray to black clayey SAND (SC) with silty SAND (SM), bed, slight petroleum-like odor, bottom of sample (black) -COHESIVE FILL-
	3 3 3	S5 14	9.0 11.0	0.8		1.1	S5: To	op 4.0 in.: Similar to above
- 10 – -	3 2	S6	11.0	0.7	OL/ OH SP	-1.1 10.0 -2.1 11.0		ttom 10.0 in.: Medium stiff dark brown ORGANIC SOIL DH), smooth texture, organic odor, wet -ORGANIC DEPOSITS- 10 25 35 25 5
	5 5 4 4	10	13.0		51	11.0	Loose odor, v	gray poorly graded SAND (SP), mps 1.5 cm, no structure, no
	2 3 4 7	S7 11	13.0 15.0	0.5	SP			gray poorly graded SAND with gravel (SP), mps 2.0 cm, no ure, no odor, wet
- 15 -	10 2 3 2	\$8 10	15.0 17.0	0.6	CL	-6.6 15.5	S8: M6	Change in effort to drive split spoon at 15.5 ft. ledium stiff olive brown lean CLAY (CL), mps < 0.1 mm, y structure, no odor, moist
	2 2 3 4	\$9 19	17.0 19.0	0.5	CL		1	ar to S8 above PP 1.5 tsf -MARINE DEPOSITS-
	4			0.0	CL			um stiff olive gray lean CLAY (CL), mps < 0.1 mm, no ure, no odor, wet
20 -		Wa	ater Le	evel Dat				Sample ID Well Diagram Summary
D	ate	Time	Elap Time		Dep ottom Casing	th (ft) to Bottom of Hole	o: Water	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample Riser Pipe Screen Filter Sand Overburden (ft) 64.9 Rock Cored (ft)
	29/17 29/17	0708 0915		5.0 NV	V 54.0 59.0		5.5 11.5	S - Splitspoon Sample G - Geoprobe G - Geoprobe G - Geoprobe G - Geoprobe
<u></u>	J T 1			Dilatara	ev: D	Donid	Q Clavr	N - None Concrete Bentonite Seal Boring No. HA1/-1
	d Tests			Toughr	ness: l	Low 1	M - Mediu	um H - High
NO	te: Ma							bservation within the limitations of sampler size. risual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

Н		DRIC	Н				EST BORING REPORT	F	ile l	ng No. et No	13	3077 2	71-0	HA 02 3	17-	1	_
Œ	lows I.	o N O O	e €	ngs	loqu	ر#) ر	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel		Sanc	<u></u>			eld σ	Те	25
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
	1 3 4 3	S10 24	21.0 23.0				PP 1.3 tsf -MARINE DEPOSITS-										
- - 25 -	1 1 2 2	S11 24	24.0 26.0	0.0	CL		Soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet PP~0.8~tsf					1	100	N	L	н	
- 30 -	1 1 1 2	S12 24	29.0 31.0	0.0	CL		Similar to above, very soft PP 0.3 tsf					1	100	N	L	Н	
- - 35 –	1 1 1 2	S13 24	34.0 36.0	0.0	CL		Very soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet PP 0.5 tsf					1	100	N	L	Н	
- 40 –	1 2 2 3	S14 24	39.0 41.0	0.1	CL		Similar to above, except soft PP 0.75 tsf					1	100	N	L	Н	
- 45 –	1 1 3 7	S15 24	44.0 46.0		CL		Soft olive gray lean CLAY with sand (CL), mps 1.0 cm, no odor, wet, sand and rounded gravel confined to bottom 6.0 in. of sample		5	5	5	10	75				
.						-38.1 47.0	Note: Intermittent chatter 47.0 to 48.0 ft indicates strata change.					\dashv					
							-GLACIOFLUVIAL DEPOSITS-										
.	5	S16	49.0	0.0	GP		Medium dense gray poorly graded GRAVEL (GP), mps 2.5 cm, no	20	65	5	5	5					
									_		1				17-	_	

HZ	ALE	Y	Н			TI	EST BORING REPORT	F	Bori	No.	1	307	71-0 of	HA 002 3	17-1	l
$\overline{}$	N N	o 🗇		SE	0	f)	VICINAL MANUAL IDENTIFICATION AND DESCRIPTION	-	avel	_	San			_	eld	Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	se		se	En		,		S	
ept]	per 6	mpl Rec	Sam	P Re	SS	Strat Char v/De	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
	San			吕	Š	Ele	GEOLOGIC INTERPRETATION)	%	%	%	%	%	%	iii	٥	<u>B</u>
50	15 15	8	51.0				structure although gravel rounded, no odor, wet									
	17						-GLACIOFLUVIAL DEPOSITS-									
						-43.6 52.5										
						52.5										
	13	S17	54.0	0.0	SM		Dense gray silty SAND with gravel (SM), mps 1.5 cm, moderately well bonded, no odor, moist		15	15	20	20	30			
55 -	19 17 14	10	56.0				wen bonded, no odor, moist									
							-GLACIOMARINE DEPOSITS-									
							Note: Abrupt change in effort to drive casing at 57.5 ft.									
							. Transfer of Tran									
	14 15	S18 16	59.0 61.0		SM		S18 top $10.0~\rm{in.:}$ Dense gray silty SAND (SM), mps $8.0~\rm{mm}$ as trace fine gravel, no structure, no odor, wet									
	17 50					-51.6 60.5	TOP OF WEATHERED BEDROCK 60.5 FT									
+	72	S19	61.0			60.5	S18 bottom 6.0 in.: Very dense light gray completely weathered rock, difficult to discern rock fabric excel in split spoon tip									
1	120/5		63.0				S19: Very dense light gray/white completely weathered rock, approaching residual soil, rock fabric present in split spoon in tip									
-							-WEATHERED BEDROCK-									
						-56.0 64.9	BOTTOM OF EXPLORATION 64.9 FT									
							Note: Split spoon refusal at 64.9 ft.									
							1vote. Spili spooli telusai ai 04.9 ft.									
_								L					L			

9 \$1 0.5 7 20 2.5	Н		Y	Н			Т	EST	BORING REPORT Boring No. HA	17-2
Casing Sampler Barrel Drilling Equipment and Procedures	Clie	ent	DL	J RE	AL EST	TATE	CAPIT	AL PAR	Sheet No. 1 of 3 Start 25 August 20	
Bit Type: Roller Bit Diameter (in.) 4 - 3 1 3/8 - Diameter (in.) 4 - 3 1					Casing	San	npler	Barrel	Dalling Frederick and Donald and	17
The state Diameter (ii) 1 - 3	Тур	e		I	IW NW	7 :	s		. ,	
All All	Insid	de Dia	meter	(in.)	4 - 3	1 3	3/8		Lievation 9.7 (est.)	
Househammer Fall (in.) 30 30 - Househammer Fall (in.) 30 - Househammer Fall (in.) 30 - Househammer Fall (in.) 3	Han	nmer V	Veight	(lb)	140	14	40	-	Casing: HW Drive to 14.0 ft NW to 49.0 ft Location See Plan	
Section Sect	Han	nmer F	all (in	.)	30	3	0	-		
Section Sect	£	swo .		⊕ ⊕	sbu	log	€		WISHAL MANUAL IDENTIFICATION AND DESCRIPTION Gravel Sand Fig	
Section Sect	th (f	er Bl	ole N c. (ii	The (f	eadii pm)	Sym	atum ange	-	(Color, GROUP NAME, max, particle size [†] .	ness Sity
Section Sect	Dep	ampl	am) Re	Sal	ଘ ନ ବ	scs	Str		structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	ougr
Signature Sign	0 -	ιχ	0, &		<u> </u>					- 6 0
10 S2 2.5 0.4 SM/ SC Medium dense brown silty with clayey SAND mix (SM/SC), mps 2.0 5 5 15 25 50		-		0.5	1		0.2	Mediu	m dense brown/gray/gray brown multi layered sand/silty sand	
10		7	20	2.5				(SM/S	P), layers up to 8.0 in. thick	
Sample S		10 10			0.4	1		1		
10	5 -	4 3			0.5	1		Simila		
10		·	\$4	7.0	-	SM/		Simila	r to above	
10		4 3								
-ORGANIC DEPOSITSORGANIC DEPOSITSORGANIC DEPOSITSORGANIC DEPOSITSORGANIC DEPOSITSORGANIC DEPOSITSORGANIC DEPOSITSORGANIC DEPOSITSORGANIC DEPOSITSORGANIC SOIL (OL/OH), mps				9.0	1		0.7 9.0	Loose	dark brown disturbed ORGANIC SOIL with sand (OL/OH) 10 15 75	
1	10 -	2	15	11.0		OH			-ORGANIC DEPOSITS-	
15			96		1			C6 ton	5.0 in a Wood/wood fibers	
15							_2 3	1 ^	5.0 In.: wood/wood fibers	
1						1	12.0		` " 1	-++
15		1	S7	13.0	1			4.0 iii	ii, no structure, no odor, wet	
15		2								
1	4-						_5 3			
Solution Solution	15 -				1.6	CL	15.0			МН
1 S10 19.0 0.2 CL Stiff olive brown lean CLAY (CL), mps < 0.1 mm, blocky structure, no odor, moist PP 1.5 tsf PP 1.5 ts		5	24	17.0	2.0			Structu	PP 4.0 tsf	
Structure, no odor, moist PP 1.5 tsf PP 1.5 tsf					0.7	CI		Cr. cc. 1		, , ,
Water Level Data Sample ID Well Diagram Summary Date Time Elapsed Time (hr. of Casing of Hole 8/25/17 1420 10.0 NW 43.0 50.5 10.9 8/28/17 0652 64.0 NW 43.0 50.5 10.1 G-Geoprobe Field Tests: Dilatancy: R - Rapid S - Slow N - None Toughness: L - Low M - Medium H - High Toughness: L - Low M - Medium H - High Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High		6 5			0.7	CL		1	ire, no odor, moist	МН
Water Level Data Sample ID Well Diagram Summary O - Open End Rod Time (hr. of Casing of Hole Water of Casing 8/28/17 0652 64.0 NW 43.0 50.5 10.1 G-Geoprobe Sample ID Well Diagram Summary O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample Screen U - Undisturbed Sample S - Splitspoon Sample Grout Concrete Bentonite Seal Field Tests: Dilatancy: R - Rapid S - Slow N - None Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High		1		19.0	0.2	CL		Soft ol	ive gray lean CLAY (CL), < 0.1 mm, no structure, no odor, $ $	LH
Date Time Elapsed Depth (ft) to: Bottom Bottom Of Casing Of Hole Valen S/25/17 1420 10.0 NW 43.0 50.5 10.9 S/28/17 0652 64.0 NW 43.0 50.5 10.1 OF Geoprobe OF Geoprobe Of Geoprobe Of Geoprobe Of Geoprobe Of Geoprobe Of Geoprobe Overburden (ft) S/25/25/25 Of Geoprobe Overburden (ft) S/25/25/25 Overburden (ft) S/25/25 Overburden (ft) S/25/25/25 Overburden (ft) Over	20 –	1						wet		
Date Time (hr. Bottom of Casing of Hole Water S-Splitspoon Sample S-Splitspoon S			Wa				th (ft) t	o.	Dicar Pine	
8/25/17 1420 10.0 NW 43.0 50.5 10.9 S - Splitspoon Sample 8/28/17 0652 64.0 NW 43.0 50.5 10.1 G - Geoprobe U - Undisturbed Sample S - Splitspoon Sample G - Geoprobe S - Geoprobe S - Geop	D	ate	Time		hr \ E	Bottom	Bottom	Water	T - Thin Wall Tube Screen Screen Overburder (it) 50.5	
8/28/17 0652 64.0 NW 43.0 50.5 10.1 G - Geoprobe Grout Concrete Bentonite Seal	8/2	5/17	1420	10					U - Undisturbed Sample S - Splitspoon Sample Cuttings Samples S17	
Field Tests: Dilatancy: R - Rapid S - Slow N - None Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High									G - Geoprobe Grout	2
Toughness: L - Low M - Medium H - High Dry Strength: N - None L - Low M - Medium H - High V - Very High	Eist:	d Tact-			Dilata	nev. D	. Ranid	S - Slow	Bentonite Seal	
MODE: MISTRUM DISTING SIZE IS DESCRIBED BY DISCUSSION WITHIN THE HIMITATIONS OF COMPLEX CITY				na4! - !	Tough	<u>néss: l</u>	<u> - Low</u>	M - Mediu	ım H - High	<u> </u>

H	ALE	Y	Н			TI	EST BORING REPORT	F		No.	1	307	71-0	02	17-	۷	
				SD	ō	(H)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	_	avel	_	lo. San		of		ield	Tes	- s
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
20	2 2																
							-MARINE DEPOSITS-										
25 -	1 1 2 2	S11 21	24.0 26.0	0.0	CL		Similar to S10 above PP 0.5 tsf						100	N	L	Н	
	1	S12	29.0	0.1	CL		Similar to above										
30 -	1 2 2	24	31.0				PP 0.5 tsf										
35 -	7 15	S13 9	34.0 36.0	0.0	SM	-23.3 33.0	Dense olive gray silty SAND with gravel (SM), mps 2.5 cm, no structure, no odor, wet	5	10	5	5	40	35				
	27 25						-GLACIOMARINE DEPOSITS- Note: Borehole required installation of NW (3.0 in. diameter) casing										
							after S13, due to borehole not staying open.										
40 -	13 21 20 11	S14 10	39.0 41.0	0.0	SM		Dense olive brown silty SAND with gravel (SM), mps 2.2 cm, weakly bonded, no odor, wet	5	10	10	10	35	30				
-	110	\$15 _4	42.0 \42.5	0.0	GP	-32.3 42.0 -33.3 43.0	Very dense gray coarse GRAVEL (GP), some rounded pieces -GLACIOFLUVIAL DEPOSITS- TOP OF COMPLETELY WEATHERED BEDROCK 43.0 FT Note: Abrupt change in drilling effort at 43.0 ft.						100				
45 -	18 20 29 48	\$16 16	44.0 46.0				Dense light gray with iron staining completely weathered rock approaching residual soil										
-							-WEATHERED BEDROCK-										
	38	S17	49.0				Very dense white completely weathered rock as residual soil										

Н		Y	Н			TI	EST BORING REPORT	F	ile I	i ng No.	1	307	71-0 of	HA 002	17-	2	
	υ			Ø	_	<u> </u>		_	avel	_	San		<u> </u>		اماط	Tes	_
£	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	_	_	_				Г		165	
Depth (ft)	n 6 B	<u></u> <u>e</u> <u>(</u>	ld H	ad m)	Syr	angul	(Color, GROUP NAME, max. particle size [†] ,	% Coarse	١	% Coarse	% Medium	٠.	S.	cy	Toughness	≟	₽
ebi	ple Ser	문항	san ept	8 g	တ္လ	Stra	structure, odor, moisture, optional descriptions	Sa	ije.	Soa	le le	i⊒e	ije.	ıtar	lgh	St:	şuğ
D	Sarr	Sa 8	ص ت	은	SC		structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	1%	% Fine	1%	%	% Fine	% Fines	Dilatancy	2	Plasticity	Strength
	51	9	50.5			ш		Ť		Ĕ				Ē	_	_	=
- 50 -	120		30.3			40.8	-WEATHERED BEDROCK-										
					-40.8 50.5	BOTTOM OF EXPLORATION 50.5 FT	\top									_	
							Note: Split spoon refusal at 50.5 ft.										

NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

H&A-TEST BORING WITH PERM PID COLUMN HA-LIB09-BOS.GLB HA-TB+CORE+WELL-09 W FENCE.GDT G:\130771 - 1 BOYNTON YARDS\GINT\130771-002-TB.GPJ

9 Nov 17

Boring No.

Н	ALE	Y	н			•	TEST	BORING REPORT		Во	rin	g I	No.		H <i>A</i> (C	17)W	7-3
Proj Clie Cor		DL	J REA	ON YAI AL ESTA ERN DI	ATE (CAPI	ΓAL PA	RTNERS	Sh St	neet art	No		of A	3 agu	02 st 20 er 2		
			(Casing	San	npler	Barre	Drilling Equipment and Procedures	1	nish iller			_		olm		,
Туре	е			HW		s		Rig Make & Model: Mobile Drill B57 Truck	—	&A I			S.	Sha	ay		
Insid	le Dia	meter ((in.)	4	1 3	3/8		Bit Type: Roller Bit Drill Mud: None	1	eva atun		1	10 N.	.0 AV]	(est D 8	.) 3	
	nmer F	Veight all (in.	` ′	140 30	3	40 80	-	Casing: HW Drive to 10.0 ft Hoist/Hammer: Winch Automatic Hammer PID Make & Model: MiniRAE 2000 10.6 eV	Lc	cat	ion	S	ee l				
€	Blows in.	S (E)	Œ (£	dings)	loqu	gram	H (#)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	avel	_	San □ ⊱					Test
Depth (ft)	Sampler E per 6 i	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
0 -				1.0	G.D.		9.8 0.2	-ASPHALT-	Ę	10	20	40	20	_			
	12 52 88	S1 8	0.5 2.0	1.9	SP			Very dense gray brown poorly graded SAND with gravel (SP), mps 2.8 cm, no structure, no odor, dry, 10% brick, trace ash	5	10	20	40	20	5			
	10 14 26 18	S2 15	2.0 4.0	0.4	SP- GM/ SM	4		Dense brown and black in layers up to 4.0 in. thick poorly graded SAND with silt and silty GRAVEL (SM-SP/SM), mps 2.0 cm, well defined placed layers, no odor, moist, trace cinders	5	5	20	20	30	20			
5 -	6 7 6 5	S3 12	4.0 6.0		SP			Medium dense yellow brown poorly graded SAND (SP), mps 1.5 cm, trace gravel, no structure, no odor, wet from drilling			15	65	15	5			
	10 12 6	S4 10	6.0 8.0	-	SP			Similar to S3 above -FILL-			15	65	15	5			
	4						2.0										
	4 3 3 5	S5 6	8.0 10.0		SM		8.0	Loose yellow brown silty SAND (SM), mps 2.5 cm, no structure, no odor, wet	5	5	15	30	15	30			
- 10 -	6 6 5 6	S6 2	10.0 12.0	_	GP			Medium dense coarse gravel, poor recovery	100)							
	6 4 4 4	S7 6	12.0 14.0	_	SP			Loose yellow brown poorly graded SAND (SP), mps 4.0 mm, no structure, no odor, wet			5	80	10	5			
15 -	3 5 7	S8 24	14.0 16.0		CL		-4.0 14.0	Stiff gray grading to olive brown lean CLAY (CL), mps < 0.1 mm, blocky structure, no odor, moist PP 3.5 tsf						100	N	Н	H V
	8 7 8 8 8	S9 24	16.0 18.0	_	CL			Stiff gray grading to olive brown lean CLAY (CL), mps < 0.1 mm, blocky structure, no odor, moist PP 2.4 tsf									
	3 3		19.0 21.0					-MARINE DEPOSITS- No recovery									
20	3	Ws		vel Dat	a	<i>(</i>		Sample ID Well Diagram		<u> </u>	Sun	ıma	ırv	<u> </u>			
Da	ate	Time	Elap	sed		th (ft) Bottor of Hol	n Wate	O - Open End Rod Riser Pipe Over		den	(fl	i)	<u>y</u>	53 9			
9/1	1/17	0705	16	.0 NW	V 42.5	44.0	9.2	S - Splitspoon Sample G - Geoprobe S - Splitspoon Sample G - Geoprobe S - Splitspoon Sample Grout Concrete Bentonite Seal				S13]			3 (OV	V)
Field	l Tests	:	•					N - None Plasticity: N - Nonplastic L - Low M - I ium H - High Dry Strength: N - None L - Low M - Me						Ver	Hia	h	
†Not	te: Ma			size is o	detern	nined b	y direct	by Sternard Within the limitations of sampler size. visual-manual methods of the USCS as practiced by Hale						. 01)	y		

Н	¦λ}-F	Y	·H				TES	T BORING REPORT	F	Bor ile	No.	1	307	71-0	002	3 (0	OW)
				S	_	<u>ج</u> ا	<u> </u>		_	Shee avel		lo. San		of		اماط	Tes	
Œ	Blow in.	S (ii)	e E E	ding (n	ymbc	agrar	ge H	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION				_	$\overline{}$					
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 20 - - -	4 4							-MARINE DEPOSITS-										
- - 25 - -	1 1 2 2	S10 24	24.0 26.0		CL			Soft olive gray lean CLAY (CL), mps < 0.1 mm, no structure, no odor, wet PP 0.6 tsf						100	N	L	Н	V
- - - 30 -	1 1 2 2	S11 24	29.0 31.0		CL			Similar to S10 above PP 0.9 tsf						100	N	L	Н	V
- - - 35 -	12 100 39 53 100/2	S12 9	34.0 35.0 35.0				-24.5 34.5 -25.0 35.0	No recovery - bent spoon at 35.0 ft TOP OF WEATHERED BEDROCK 35.0 FT Very difficult drilling effort with no water return from 35.0 to 39.0 ft, advanced roller bit through very hard material to 39.0 ft										
- - - 40 -	10 35 \50/0f	S13 6	39.0 40.0		GM			Note: Drill action indicates seams of highly weathered and fractured bedrock from 35.0 to 42.0 ft; Very dense dark gray silty GRAVEL with sand (GM), mps 2.5 cm, no structure, no odor, wet Note: Possible seams within rock mass. -WEATHERED BEDROCK- Note: Borehole required installation of 3.0 in. (NW) spun	10	35	5	15	15	20				
- - 45 - -		25/0	42.0				-32.0 42.0	No recovery, split spoon bouncing on bedrock Note: Advanced borehole with roller bit to 44.0 ft prior to coring. See core boring report HA17-3 in. for rock visual classification and drilling information SEE CORE BORING REPORT FOR ROCK DETAILS										
_	NOTE	Soil :-	lantifica:	tion bec	ad on	vieus	manual	nethods of the USCS as practiced by Haley & Aldrich, Inc.	P	ori	na	No.		HA	17-	3 (0	OW	<u></u>

H&A-TEST BORING WITH PERM PID COLUMN HALIB09-BOS.GLB HATB+CORE+WELL-09 W FENCE.GDT GA130771 - 1 BOYNTON YARDS/GINT130771-002-TB.GPJ 9 Nov 17

ALDRICH

CORE BORING REPORT

Boring No. HA17-3 (OW) File No. 130771-002 Sheet No. 3 of 3

	DNIC	П							Sheet No. 3 of 3
Depth	Drilling	Run	Run	Recove	rv/RQD	Weath-	Well	Elev./	Visual Description
(ft)	Rate (min./ft)	No.	Depth			ering	Dia-	Depth	Visual Description and Remarks
	(111111.711)		(ft)	in.	%		gram	(ft)	
-	4	C1	44.0	60	100.0	Fresh			SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
		CI	49.0	44	73.3	Ticsii			C1: Very hard fresh to slightly weathered gray aphanitic to fine grained DIABASE Bedding not apparent. Joints dipping at low to moderate angles, close to moderate,
- 45 -	3								stepped to planar, discolored, open. Extremely thin to very thin secondary
-	4								mineralization in irregular stringers minimal water loss after 46.0 ft within gray, silty wash water return.
	4					Slight			
	3								
_									
	3					Fresh			-BEDROCK-
-	4	C2	49.0	48	100.0	Fresh			C2: Recovered bottom 1.0 ft of C1. Very hard fresh, gray, aphanitic to fine graine
5 0		C2	53.0	47	97.9	Tresir			DIABASE. Similar to above, minimal water loss. Core barrel jammed at 53.0 ft.
- 50 -	4								
-	4								
-	4								
	4							-43.0 53.0	
	4					Fresh		53.0	BOTTOM OF EXPLORATION 53.0 FT
-									
- 55 -]								
- 55 -									
-									
- 60 -									
- 60									
-									
-									
-									
-									
- 65 -									
•									
-									
_									
- 70 -	-								
-									
-									
_									
- 75 -	1								
-									
			_						

GROUNDWATER OBSERVATION WELL Well No. HA17-3 (OW) INSTALLATION REPORT Well Diagram Project **BOYNTON YARDS** File No. 130771-002 SOMERVILLE, MA Riser Pipe Date Installed 1 Sep 2017 Location Screen H&A Rep. S. Shay DLJ REAL ESTATE CAPITAL PARTNERS Client Filter Sand Location See Plan Contractor NORTHERN DRILL SERVICE, INC. Cuttings Grout Driller Carl Beirholm Concrete Ground El. 10.0 (est.) Bentonite Seal Datum NAVD 88 9.2 ft Initial Water Level (depth bgs) SOIL/ROCK ELEVATION (ft.) WELL GRAPHIC DEPTH (ft.) **DETAILS** WELL CONSTRUCTION DETAILS CONDITIONS Type of protective cover Compression - pent. bolt 0.0 10.0 Depth of Roadway Box below ground surface 0.0 ft-0 ASPHALT 0.2 0.4 9.6 0.5 9.5 Depth of top of riser below ground surface 0.4 ft 2.0 8.0 3.0 7.0 Roadway Box Type of protective casing -5 Length 0.9 ft 4.0 in. Inside diameter 10 FILL 0.9 ft Depth of bottom of Roadway Box Type of riser pipe Schedule 40 PVC 15.0 -5.0 -15 17.0 -7.0 Inside diameter of riser pipe 2.0 in. Depth of bottom of riser pipe 5.0 ft -20 Type of Seals Top of Seal (ft) Thickness (ft) MARINE 0.0 0.5 Concrete -25 **DEPOSITS** BOYNTON YARDS/GINT/130771-002-TB. 2.0 1.0 Bentonite 17.0 18.0 Bentonite 30 Diameter of borehole 4.5 in. Depth to top of well screen 5.0 ft 35.0 -25.0 35 Type of screen Machine slotted Sch 40 PVC G:\130771 - 1 WEATHERED 0.010 in. Screen gauge or size of openings BEDROCK -40 **GW INSTALLATION REPORT-07-1** 2.0 in. Diameter of screen Type of Backfill around Screen _ #1 Filter sand 45 Depth to bottom of well screen 15 ft Not used BEDROCK Bottom of silt trap -50 53.0 ft Depth of bottom of borehole -53.0 COMMENTS:

Н		Y	н				GEO	PROBE REPOR	Т			Во	rin	g N	lo.]	B4		
Clie	ject ent ntracto	DL	J REA	L EST	ATE		AL PAR	, MASSACHUSETTS TNERS			Sh Sta	eet art	No		of Auş	1 gust	t 2 0			
			(Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures			nish iller		Zacl	•		t 20 er	1/		
Тур	е			None	(G		Rig Make & Model: 6620) DT Geoprobe		Н8	kA F	⋜ер				odsc			
Insi	de Dia	meter	(in.)		1.0	595		Bit Type: Direct Push Drill Mud: None				eva itum					(est) 88			
l		Weight	` ′				-	Casing: Hoist/Hammer: Winch	Automatic Hammer		Lo	cati	ion	Se	e P	lan				
Har		all (in	.)	ω			-	PID Make & Model: Min	niRAE 2000 10.6 eV		Gra	avel		Sand			Ei	eld	Too	
(∰	· Blow in.	e No (in.)	ple (#)	ading n)	ymbc	um bgr pth (f	'	VISUAL-MANUAL IDENTIFICA			_			Ę		,		SS		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		(Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTER	optional descriptions		Coarse	Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	S P	თ ∞ G1	0.0	ND	SP	9.9		-DEGRADED BITUMIN	,		% 10		_	\vdash	_	_		ř	₫	<u></u>
-	U 45 5.0 SM 9.5 Olive to gray to dark gray brown silty SAND with gravel										10	10	10	25, 15	35	20	_		7	
-	1.625 in., layered, 20% lenses of cinders and ash, 10% concrete, no odor, moist																			
-							concre	te, no odor, moist -FILI	<i>-</i>											
- - 5 -					SW		Light b	prown well graded SAND with	gravel (SW), mps 1.6 in.	no	10	15	20	30	25					
	P U	G2 39	5.0 10.0	ND	SC	4.5 5.5		re, no odor, moist to wet gray brown clayey SAND with	gravel (SC), no structure.		├-			\vdash	-+	-+	-+	-+	-+	
ŀ	H	H SW 6.5 odor, wet, gravel is angular									F					100	N	L	L	_
-		CL 3.0 CDHESIVE FILL-Gray brown well graded SAND with gravel (SW), m									1				-	100	1		_	
-								-ESTUARINE I												
- 10 -						0.0 10.0	odor, v		-	no	\vdash									_
								-MARINE DI BOTTOM OF EXPLO												
		Wa	ater Le	vel Da		1	1	Sample ID	Well Diagram				Sum	mar	y					=
D	ate	Time	Elap Time	(hr B	ottom	th (ft) to Bottom	o: Water	O - Open End Rod T - Thin Wall Tube	Riser Pipe Screen	Over			•	•	1	0.0)			
8/	9/17	0915	0.	<u>` 101 '</u>	Casing	of Hole	to 4.3 ft	U - Undisturbed Sample	Filter Sand Cuttings	Rock Sam			(ft) G2	2	-				
"	~1±1	0,13	0.		uncu, (ыларяси	10 4.3 Il	G - Geoprobe	Grout Concrete	Bori).	J.		E	34			
Field	d Tests	 ::		Dilatar	ncy:R	- Rapid	S - Slow		Bentonite Seal Sity: N - Nonplastic L - Lo	w M - N	/ledi	um	H -							
<u> </u>		ximum		size is	detern	nined by	direct ob	servation within the limitation								/ery	High	1		_
Щ		NC.	<u>πe: S</u>	<u>oli ider</u>	ntificat	ion bas	<u>ea on vi</u>	sual-manual methods of the	ne usus as practiced b	y Hale	у&	Ald	ırıcl	<u>1, In</u>	С.					

Н		PRIC	Н				GEO	PROBE REPOR	т			Во	rin	g N	lo.			В6		
Clie	ject ent ntracto	DL	J REA	L EST	ATE		AL PAR	, MASSACHUSETTS TNERS			Sh Sta	eet art	No	. 1 9	077 of Au Au	1 gus	st 20			
				Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures			nish iller			Au k N	-)1 /		
Тур	е			None		G		Rig Make & Model: 6620	DT Geoprobe		Н8	&A F	Rер				ods	on		
''		meter	(in.)		1 1	695		Bit Type: Direct Push Drill Mud: None					tion	ı			est.			
l		Neight	` '				_	Casing:			-	atun	n ion	C	ee I		D 8	8		
Har	nmer I	Fall (in	.)				_	Hoist/Hammer: Winch PID Make & Model: Min				out		5	CC I	iai				
	S N	o 🕣		sb		Œ		VISUAL-MANUAL IDENTIFICA			Gra	avel		San	d		F	ield	Tes	st
¥	r Blo 6 in.	le N	nple :h (ft	adin m)	Syml	ntum inge		(Color, GROUP NAME,			rse		rse	E E		တ္သ	5	ress	Ξź	£
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		structure, odor, moisture, GEOLOGIC INTER	optional descriptions		Coarse	Fine	Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	B B			ND	SM	ш		gray to gray to black silty SAN	<u>, </u>	1 625	%	% 10	% 10	% 20	% 30			1	颪	S
-	U S	G1 52	0.0 5.0	ND	SIVI		in., lay	vered/ disturbed with 20% poc	kets/lenses of cinders and a	ish,	10	10	10	20	30	20				
-	й							rick and concrete fragments, b es at 3.8-4.6 ft, no odor, moist		ood										
-								-FILI	_											
-								-l'ILI	<i>-</i> -											
- 5 -	D	C2	5.0	ND	SM	4.7 4.6		silty SAND with gravel (SM),			5	15	10	20	20	30	<u> </u>		-	├-
-	P U S	G2 37	5.0 10.0	ND				onal hard pieces of lean clay, a imately 9.5 ft, becomes slightly												
-	H						ft	,												
-																				
-																				
- 10 -		62	10.0	ND	SM	-0.7 10.0		Γορ of natural may be higher of					10	20	45	15				
-	P U S	G3 46	10.0 15.0	ND	SIVI	10.0		o olive gray silty SAND (SM), re, no odor, wet	mps 0.4 in., no visible				10	30	43	13				
-	H				OL/	-2.7 12.0	Oliva	-ESTUARINE I gray brown ORGANIC SOIL (.b.t						100				
-					OH	12.0		gray brown ORGANIC SOIL (gen sulfide odor, wet 10% peat		giii						100				
-								-ORGANIC D	FPOSITS.											
- 15 -						-5.7 15.0		BOTTOM OF EXPLO												
						13.0		BOTTOM OF EATEO	KATION 15.011											
			Гіоп	vel Dat		th (ft) to	n·	Sample ID	Well Diagram Riser Pipe				Sum							
D	ate	Time	Elap Time	(hr B	ottom	Bottom	Water	O - Open End Rod T - Thin Wall Tube	Screen	Over Rock			•	,		15.0)			
				101 (Casing	of Hole		U - Undisturbed Sample S - Splitspoon Sample	Filter Sand Cuttings	Sam			(ונ	.) G	3	-				
								G - Geoprobe	Grout Concrete	Bori).		-]	B6			
Fial	d Tests	<u> </u>		Dilatan	icv. Þ	- Ranid	S - Slow	N - None Plastic	Bentonite Seal					Hiat	<u> </u>					
L			narticle	Tough	néss: I	<u>L - Low 1</u>	M - Mediu		rength: N - None L - Low							Very	/ Hig	<u>lh</u>		
	.c. Mia	No	te: S	oil ider	ntificat	tion bas	ed on vi	servation within the limitation sual-manual methods of the	ne USCS as practiced to	y Hale	y &	Alc	Iricl	h, Ir	ıc.					

H&A-GEOPROBE-09 W/ PID HA-LIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:\\\ 130771-\\ 1BOYNTON YARDS\GINT\\\ 130771-\\ 002-GEOPROBES.GPJ 5 Nov 17

Н		Y	н				GEO	PROBE REPOR	Γ			Зо	rin	g N	lo.			C4	ļ	
Clie	ent otracto	DL	J REA	L EST	ATE		AL PAR	, MASSACHUSETTS TNERS			Sh Sta	eet art	o. : No	. 1 9	of Au	1 gus	st 20			
			(Casing	San	npler	Barrel	Drilling Equipment	and Procedures			nish iller		9 Zac		_	t 20 er)1 /		
Тур	е			None	(G		Rig Make & Model: 6620	DT Geoprobe		Н8	kA I	Rep				ods	on		
Insid	de Dia	meter	(in.)		1.0	595		Bit Type: Direct Push Drill Mud: None				eva itun	tion n				(est D 8			
l		Neight	` ′				-	Casing: Hoist/Hammer: Winch	Automatic Hammer		_		ion	S	ee I					
Han		Fall (in	.)		<u> </u>		-	PID Make & Model: Min												
€	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	≘ (±)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	\	/ISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION		_	ivel		Sano	t				Tes	
Depth (ft)	pler ser 6	mple Rec.	Sample Depth (ft)	Rea (ppm	SS Sy	Stratu Chan		(Color, GROUP NAME, structure, odor, moisture,			Coarse	Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	San	Sa R I	٥			Ele		GEOLOGIC INTER			%	%	_	_	-	_		Tor	Pla	Stre
["]	P U	G1 38	0.0 5.0	ND	SP- SM	10.0 0.6		gray brown poorly graded SAN 3 in., no structure, no odor, m		-SM),	5_	15	10	20	40	10	_			
L	S H				SM			ray brown to gray brown silty n. (brick), layered, no odor, m												
-								5% coal particles	10.000, 20 % 0.000010, 10 % 0											
-								-FILL	-											
- 5 -	P	G2	5.0																	
-	U S	42	10.0	ND	SC	4.4 6.2	Olive h	orown clayey SAND with grave	el (SC), mps 1.6 in., no		5	10	10	20	30	25	<u> </u>		<u> </u>	┡-
-	Н						structu	re, no odor, wet, trace cinders 10 ft contains 20% very hard to	and clinkers, shell fragme											
-								wet below 10 ft		Clay										
-								-COHESIVE	S FILL-											
- 10 -	P U	G3 47	10.0 15.0	-																
	S H	4/	13.0			-1.4														
_				ND	CL	12.0	Yellow	brown lean CLAY (CL), bloc	•							100	N	L	M	
-								-MARINE DE	POSITS-											
- 15 -				_		-4.4 15.0		BOTTOM OF EXPLO	RATION 15.0 FT											
		10/	nto n l ·	VOL DE	<u> </u>				Moll Diagram				<u> </u>							
一	ata .		Flan	vel Da	Dep	th (ft) to	D:	Sample ID O - Open End Rod	Well Diagram Riser Pipe	Over	hur		Sum ff			15.(<u> </u>			
\bigsqcup_{D}	ate	Time	Time	(hr B	ottom Casing	Bottom	Water	T - Thin Wall Tube U - Undisturbed Sample	Screen Filter Sand	Rock			•	•).ر.	,			
8/9	9/17	1115	0.	2		10	9.9	S - Splitspoon Sample	ির. Cuttings Grout	Sam	oles			G	3					
								G - Geoprobe	Concrete Bentonite Seal	Bori	ng	No	Э.			(C 4			
Field	d Tests	j:	-	Dilatan	ncy: R	- Rapid L - Low	S - Slow M - Mediu		ity: N - Nonplastic L - Low rength: N - None L - Low							Ver	/ Hia	ıh		
[†] No	te: Ma			size is	detern	nined by	direct ob	servation within the limitation sual-manual methods of the	s of sampler size.											

Н		PRIC	н				GEO	PROBE REPOR	Г			Во	rin	g N	lo.			C5	i	
Clie	ject ent ntracto	DL	J REA	L EST	ATE		AL PAR	, MASSACHUSETTS TNERS			Sh St	neet art	o. : No). 1 9		1 gus	st 20			
			C	Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures			nish iller			k N	-		,1 /		
Тур	е			None		G		Rig Make & Model: 6620	DT Geoprobe		Н	&A I	Rep				ods	on		
''		meter	(in.)		1 1	695		Bit Type: Direct Push Drill Mud: None					tion	1			(es			
l		Neight	` ′		*		_	Casing:			-	atun	n ion		ee I		D 8	8		
l		Fall (in	` ′				_	Hoist/Hammer: Winch				cai	1011	3	ce i	lai	ı			
_	NS NS	G 🗇	<u> </u>	sc	 <u>0</u>			PID Make & Model: Mir			Gra	avel		San	d		F	ield	Tes	
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	'	/ISUAL-MANUAL IDENTIFICA			se		se	E		,,	5	ess	≥	ے
ept	npler per 6	Rec	Sam	(pp	SS	Strat Char V/De		(Color, GROUP NAME, structure, odor, moisture,	optional descriptions		Coarse	Fine	Coarse	% Medium	% Fine	Fines	Dilatancy	Toughness	Plasticity	Strength
l	San	S ≪	۵,۵	믭	nSi			GEOLOGIC INTER			%	%	%	%	1%	%	ä	Tol	Pa	Str
- 0 -	P U	G1 44	0.0 5.0	ND	SM	10.3 0.4		gray brown silty SAND with gree, no odor, moist	ravel (SM), mps 0.6 in., no)	-									
	S H	''	3.0		SM		Gray b	rown to black silty SAND with			10	10	10	15	40	15				
								 no odor, moist, 15% cinders and concrete fragments 	, ash, coal throughout, 109	%										
-								, and the second												
-								-FILL	-											
- 5 -	P	G2	5.0																	
-	U S H	54	10.0	ND	SP	4.7 6.0		poorly graded SAND with gra		oming	25	25	20	15	15					
-	П				CL	3.5 7.2	silty ar	nd more fine with depth, no od -ESTUARINE I			⊢					100	N	L	L	
-					-		Note: 1	Cinas hagama alastia iyat ahays	alav	/	1						- '			
-								Fines become elastic just above gray brown lean CLAY (CL)	-	wet										
- 10 -	P	G3	10.0	ND				-MARINE DE	EPOSITS-											
-	U S	50	15.0																	
-	H																			
-																				
-																				
- 15 -	P	G4	15.0	ND			Note: I	Becomes softer to touch and m	ore gray with denth											
-	Ū	37	19.0	110			Tiote. I	becomes sorter to touch and in	ore gray with depth.											
-	S H																			
-																				
-						-8.3 19.0		DOTTOM OF EVELO	DATION 10 0 ET											
- 20 -						19.0		BOTTOM OF EXPLO	KATION 19.0 FI											
		Wa	ater Le	vel Da	ta	•		Sample ID	Well Diagram				Sum	ıma	ry					
ח	ate	Time	Elap			th (ft) to		O - Open End Rod	Riser Pipe Screen	Over	bur	den	(ft			20.0)			
ّ		1	Time		ottom Casing		Water	T - Thin Wall Tube U - Undisturbed Sample	Filter Sand	Rock	Co	red	l (ft	:)		-				
				1	None	12	6.3	S - Splitspoon Sample	ि प्रं. Cuttings Grout	Sam	oles	3		G	4					
								G - Geoprobe	Concrete	Bori	ng	No	Э.			(C 5			
Field	d Tests	: :	1	Dilatar	icy: R	- Rapid	S - Slow		Bentonite Seal ity: N - Nonplastic L - Lov	/ M - N	Леdi	um _.	H -	High	1,	· /-	.12			
†No	te: Ma	ximum	particle	size is	detern	nined by	direct ob	servation within the limitation	rength: N - None L - Low as of sampler size.							very	/ Hig	ın		
$ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{L}}}}$		No	te: S	oil ider	ntificat	<u>tion bas</u>	ed on vi	sual-manual methods of th	ne USCS as practiced b	y Hale	y &	Alc	<u>lric</u> l	h, Ir	nc.					

H&A-GEOPROBE-09 W/ PID HA-LIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:\\\ 130771-\\ 1BOYNTON YARDS\GINT\\\ 130771-\\ 002-GEOPROBES.GPJ 5 Nov 17

Н		PRIC	н				GEO	PROBE REPOR	Г		I	Во	rin	g N	lo.]	D4		
Clie	ject ent ntracto	DL	J REA		ATE (CAPITA	AL PAR	, MASSACHUSETTS TNERS			Sh St		: No). 1 9	of Au	gus	02 t 20 t 20			
			c	asing	Sam	pler	Barrel	Drilling Equipment	and Procedures			iller				Vade		, 1 ,		
Тур	е		1	None	(j .		Rig Make & Model: 6620	DT Geoprobe		Нδ	&A I	Rep).	M	. D	ods	on		
Insid	de Dia	meter ((in.)		1.6	595		Bit Type: Direct Push Drill Mud: None				eva atun	tion	1			est.) D 8			
Han	nmer V	Veight	(lb)				-	Casing: Hoist/Hammer: Winch	Automotio Hommor		_		ion	S		Plan		<u> </u>		
Han		-all (in.	.)				-	PID Make & Model: Min	iRAE 2000 10.6 eV											
£	lows J.	No.	e (⊒	ings	nbol	E = =	· \	/ISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION	l	\vdash	avel	_	Sand	d I			ield တွ	Tes	st
Depth (ft)	oler B er 6 ir	ople ec. (Sample Depth (ft)	Read ppm)	S Syı	rratur hang Dept		(Color, GROUP NAME,			% Coarse	e	Coarse	ediur	e	nes	ancy	hnes	licity	hath
De	Sampler Blows per 6 in.	Sample I & Rec. (i	S. De	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (structure, odor, moisture, GEOLOGIC INTER			ŏ %	% Fine	ٽ %	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strenath
0 -	P	G1	0.0	ND	SM		Gray b	rown silty SAND with gravel (SM), mps 1.3 in., no stru	cture,	5	15	-	-						
	U S H	50	5.0		SM	8.6 0.9	Gray b 1.625 i	r, moist rown to dark gray brown silty n., no structure, no odor, mois te fragments), 5-10% cinders a	st, 10% rubble (brick and	ſ	-			_	_					
5 -	P U S H	G2 40	5.0 10.0	ND			Note: I ft.	From 5-7 ft approximately 30%		ow 7.5										
10 -	P U S H	G3 53	10.0 15.0	ND	SC/ SM OL/ OH	0.2 9.3 -1.0 10.5	in., no	gray brown clayey/silty SAND structure, no odor, wet, trace -COHESIVE DRGANIC SOIL (OL/OH), no	brick, clinkers, ash, cinded FILL- o structure, no odor, wet,	rs	10	15	10	20			N	L	 L	
					CL	-3.5 13.0	Yellow	-ORGANIC DI brown lean CLAY (CL), bloc								100	N	M	M	L
15 –	P U S H	G4 36	15.0 20.0	ND				-MARINE DE	POSITS-											
20 -						-10.5 20.0		BOTTOM OF EXPLO	RATION 20.0 FT											
	ate	Wa	Elap	I D .	Dept	th (ft) t	D:	Sample ID O - Open End Rod	Over	bur			<u>nma</u>		20.0)				
	aic	11116	Time		ottom Casing	Bottom of Hole	Water	T - Thin Wall Tube U - Undisturbed Sample	Screen Filter Sand	Rock	Cc	red	•	•	-	-				
								S - Splitspoon Sample G - Geoprobe	Grout Concrete	Samp Bori) .	G	4	I	D4			
Field	d Tests	: :					S - Slow		Bentonite Seal ity: N - Nonplastic L - Lo							\	. 1 12	<u> </u>		
			a outi a la					m H - High Dry Str servation within the limitation	ength: N - None L - Low	м - Ме	diun	n F	ı - H	igh	V -	very	/ Hig	n		_

H	ALE	Y	Н				GEO	PROBE REPOR	Т			Зоі	rin	g N	Ю.]	D5		
Proj Clie Con		DL	J REA		ATE	CAPIT	AL PAR	, MASSACHUSETTS TNERS			Sh Sta	e No	No	· 1	of Au	1 gus	02 t 20 t 20			_
			(Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures		l .	nish iller		9 Zac		-		11 /		
Турє				None		3		Rig Make & Model: 6620) DT Geoprobe		Н8	kA F					odso	on		
Insid	le Dia	meter	(in.)		1.0	595		Bit Type: Direct Push Drill Mud: None			ı	evat					(est			
Ham	mer V	Veight	(lb)				-	Casing:			_	itum cati		S		Plan		0		_
		all (in	.)				-	Hoist/Hammer: Winch PID Make & Model: Min												
£	Sampler Blows per 6 in.	Z6.	o €	ngs	loqu	€ 0.6	<u> </u>	/ISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION	ON	-	ivel		Sand	t			ield ဖ	Tes	_ st ⊤
Depth (ft)	ler B r 6 in	ple I ec. (i	Sample Depth (ft)	Readings (ppm)	Syr	ratun	5	(Color, GROUP NAME,			arse	ЭE	arse	ədiun	ЭC	sət	ancy	hnes	icity	
Del	amp pe	Sample No. & Rec. (in.)	Sa Del	PID F	USCS Symbol	Stratum Change		structure, odor, moisture, GEOLOGIC INTER			% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	l,
0	P	G1	0.0	ND	SM		Gray to	b black silty SAND with grave		no	_	15						•	_	ŧ
	U S	41	5.0				structu	re, no odor, moist, 30-40% ci	nders, ash, and coal											
	Н							-FILI	J-											
5 +	P U	G2 49	5.0	ND	GW	5.9 5.4	Gray b	rown well graded GRAVEL w	vith sand (GW), mps 1.6	in., no	├-						\vdash	-+		ł
	Š H	49	10.0				structu	re, no odor, wet, trace shell pass disturbed especially at top of	articles, wood, possible											
					CL	3.8 7.5		prown lean CLAY (CL), block	•											Ŧ
							Zigii c	-MARINE DI	•											
40						1.3		-MARINE DI	EPOSI15-											
10 +						1.3 10.0		BOTTOM OF EXPLO	RATION 10.0 FT											Ī
																				1
		Wa		evel Dat		th (ft)	to:	Sample ID	Well Diagram Riser Pipe					ma			_			_
Da	ate	Time	Elap Time	(hr B	ottom	Botton	Water	O - Open End Rod T - Thin Wall Tube	Screen	Over			•	•	1	10.0)			
8/9	0/17	1350	0.	· 101 C	Casing ulled	of Hole	5.9	U - Undisturbed Sample S - Splitspoon Sample	Filter Sand	Rock			(11) G	2	-				
5, 7		1000				1.5		G - Geoprobe	Grout Concrete	Bori).		_]	D5			_
	l Tests			Dilatan	cv. ⊳	Ranid	S - Slow	N - None Plastic	Bentonite Sea	ıl				Hiah	<u> </u>					_
	21201			Diialan	⊷y. Ҡ∵	napiu	o - SIUW		rength: N - None L - Lo											

Н		Y	н				GEO	PROBE REPOR	Т		1	Во	rin	g N	No.			E3		
Clie	ject ent ntracto	DL	J REA	AL ES	ГАТЕ		AL PAR	, MASSACHUSETTS TNERS			Sh St	e N neet art	No). 1 8	of Au	1 gus	st 20			
			(Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures			nish iller		8 Zac	Au k N	-)1 /		
Тур	е			None	(G		Rig Make & Model: 6620	DT Geoprobe		Н	&A F					ods	on		
Insid	de Dia	meter	(in.)		1.0	695		Bit Type: Direct Push Drill Mud: None				eva atun		1			(est D 8			
		Veight	` ′				-	Casing: Hoist/Hammer: Winch	Automatic Hammer		_	cat		S	ee I					
Han		Fall (in	.)	T (0			-	PID Make & Model: Min			_						_		_	
€	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	æ (±)	Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (#)	,	VISUAL-MANUAL IDENTIFICA	ATION AND DESCRIPTION	l		avel		San E				ield		
Depth (ft)	npler per 6	mple Rec.	Sample Depth (ft)	(ppn	S S	Stratu Chan V/Der		(Color, GROUP NAME, structure, odor, moisture,	optional descriptions		Coarse	Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -		s ∝	۵, ۵	П	Sn			GEOLOGIC INTER	<u> </u>		%	%	%	%	1%	1 %	ä	Tol	Pa	Str
	P U	G1 30	0.0 3.0	ND	SP SM	11.6 0.3 11.3	Tan to	-BITUMINOUS (/	-	-		-	-					 - -
_	S H				SWI	0.6	Brown	silty SAND with gravel (SM) 20% cinders, ash, clinkers pri	, mps 1.2 in., layered, no	odor,										
-	P U	G2 45	3.0 8.0					Observed 2-in. layer of black f bstance at 1 ft, slight petrocher		a tar-										
- 5 -	S H						Poorly	graded (fine) SAND layer fro -FILI		t										
-				ND	ML	5.4 6.5	Light	yellow brown sandy SILT with	gravel (MI) mps 1 4 in		L.			Ļ.			L -		L.	ļ.
					1112		structu	ire, no odor, moist, occasional and brick particles												
-	P U S	G3 58	8.0 13.0		CL	3.7 8.2		-COHESIVI		vith										
- 10 -	Й						depth,	blocky texture, slight yellow g low approximately 10.5-11 ft												
-				ND				-MARINE DI	EPOSITS-											
-						1.1														
-						-1.1 13.0		BOTTOM OF EXPLO	DRATION 13.0 FT											
		Wa		evel Da		th /ft\ 4	0.	Sample ID	Well Diagram Riser Pipe					nma						
D	ate	Time			Bottom Casing	Bottom	Water		Screen	Overl Rock			•	•	1	13.0)			
8/8	8/17	1300	0.	.5	Jasiriy	of Hole 13	12*	U - Undisturbed Sample S - Splitspoon Sample	Cuttings	Samp			(11	G	3_					
							Not stabl	1	Grout Concrete Bentonite Seal	Bori	ng	No	Э.]	E3			
Field	d Tests	:: ::	1	Dilata	ncy: R	- Rapid L - Low	S - Slow M - Mediu		city: N - Nonplastic L - Lo rength: N - None L - Low							Verv	/ Hin	ıh		
†No	te: Ma			e size is	detern	nined by	direct of	servation within the limitation isual-manual methods of the	ns of sampler size.											

Н		Y	н				GEO	PROBE REPORT		Во	rin	ıg l	No.			E5		
Clie	ject ent ntracto	DL	J REA		ATE (CAPITA	AL PAR	, MASSACHUSETTS TNERS	St St	neet art	: No		of Au	1 gus	02 t 20 t 20			
			(Casing	San	npler	Barrel	Drilling Equipment and Procedures	1	nish iller		Zac				11/		
Тур	е			None		3		Rig Make & Model: 6620 DT Geoprobe	Н	&A I	Rep				ods	on		
		meter	(in.)		1.6	595		Bit Type: Direct Push Drill Mud: None	1	eva		1			(est			
Han	nmer V	Veight	(lb)				_	Casing:	-	atun ocat		S		A V. Plan	D 8	8		
Han	nmer F	all (in	.)				-	Hoist/Hammer: Winch Automatic Hammer PID Make & Model: MiniRAE 2000 10.6 eV				J			-			
<u> </u>	SWG	o (;		sb	lod	Œ		/ISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		San					Test	t
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		(Color, GROUP NAME, max. particle size [†] ,	lse		Coarse	% Medium		S	ς	Toughness	Ę	달
Дер	mple	amp Rei	Sar Dep	D R (9)	scs	Stra Cha		structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	ပို	Med	% Fine	% Fines	Dilatancy	ugh	Plasticity	Strength
- 0 -						11.6		<u>, </u>	%	%	%	%	%	%		ř	<u>-</u>	જ
-	P U S H	G1 47	0.0 5.0	ND	SM SM	0.4	Gray b weakly concre	Γορ 5 in. contains no rubble or cinders/ash. rown to near black silty SAND with gravel (SM), mps 1.4 in., layered, no structure, no odor, moist, 5-10% brick and te fragments, 5-10% cinders, ash and coal particles, siltier .5-5.0 ft with fewer cinders/ash, trace wood fragments -FILL-	5	10	10	20	35	20				_
- 5 - - -	P U S H	G2 38	5.0 10.0	ND	SM/ SC	7.0 5.0	1.625 approx high si	to gray to olive silty/clayey SAND with gravel (SM/SC), mps in., weakly layered, no structure, no odor, moist to wet below imately 9 ft, from approximately 9-10 ft material is black with lt/organic content, below 10 ft higher clay percentage, clearly ed, occasional, peat fibers	10	10	10	15	30	25				
-								-COHESIVE FILL-										
- 10 –	P	G3	10.0	ND														
-	U S	48	15.0															
-	Н					-0.5 12.5												
-					OL/ OH	12.5	Black odor, v	ORGANIC SOIL with sand (OL/OH), no structure, organic										
-					CL	-2.0 14.0		-ORGANIC DEPOSITS-	\vdash								+	_
- 15 - -	P U S H	G4 50	15.0 20.0	ND				gray lean CLAY with sand (CL), becomes less sandy with and more yellow brown										
- - - 20 – -	P U S H	G5 40	20.0 25.0	ND			Simila	-MARINE DEPOSITS- to above except more gray brown, softer to the touch										
- - 25 –						-13.0 25.0		BOTTOM OF EXPLORATION 25.0 FT										
		W		vel Dat		th /f+\ +	n:	Sample ID Well Diagram O Ones Fed Ped III Riser Pipe O Ones				nma						_
D	ate	Time	Elap Time	(hr Bo	ottom	th (ft) to Bottom	o: Water	T - Thin Wall Tube			•	′	2	25.0)			
				` 101 C	Casing Checke	of Hole	vvalel	U - Undisturbed Sample Filter Sand ROCI			ı (f	,	i5	-				
				1101 0	necke	u		S - Splitspoon Sample G - Geoprobe Grout Concrete Bor				U	IJ]	E 5			
Eizi	d Tast			Dilator	CV: D	Panid	S - Slow	Bentonite Seal				Hial	h					
	d Tests		mant!!	Toughn	iéss: L	Low	M - Mediu	m H - High Dry Strength: N - None L - Low M - Me						Very	/ Hig	h		
_NO	te: Ma							servation within the limitations of sampler size. sual-manual methods of the USCS as practiced by Hale	y &	Alc	dric	h, lı	ıc.					_

H&A-GEOPROBE-09 W/ PID HA-LIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:\\\ 130771-\\ 1BOYNTON YARDS\GINT\\\ 130771-\\ 002-GEOPROBES.GPJ 5 Nov 17

Н	ALE	RIC	Н				GEO	PROBE REPOR	г		ļ	Во	rin	g N	lo.			F1		
Clie	ject ent ntracto	DL	J REA	L EST	ATE (AL PAR	, MASSACHUSETTS TNERS			Sh St	neet art	: No		of Au	1 gus	02 t 20 t 20			
			C	asing	San	npler	Barrel	Drilling Equipment	and Procedures			nish iller		Zac		_				
Тур	е			None	(3		Rig Make & Model: 6620 Bit Type: Direct Push	DT Geoprobe			&A F					ods			
		meter	` 1		1.6	595		Drill Mud: None				eva atun		l			(est D 8			
	nmer F	Veight all (in	` ′				-	Casing: Hoist/Hammer: Winch PID Make & Model: Min			Lc	cat	ion	S	ee I	Plan	l			
(#)	Slows J.	No.	le (ft)	ings)	mbol	n e h (ft)	\	/ISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION	1		avel	_	Sand				ield တ္တ		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth ((Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTER	optional descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	P U	G1	0.0	ND	SM	12.2		-BITUMINOUS C	CONCRETE-		5	15	10	10	30	30	_			Ē.
	S H	34	3.0	ND	SIVI	0.3 12.0 0.5	Dark g structu	es of granular fill ray brown silty SAND with gr re, no odor, moist, 10% cinden g sand, trace brick and concrete	rs and ash, 10% black me		3	13	10	10	30	30				
- - 5 - -	U S H	G2 49	3.0 8.0	ND	SM	3.5		to gray to black CINDERS an (SM), layered, no odor, moist -CINDER/AS	d ASH, 30% silty SAND	with			-							
-	P U S	G3 37	8.0 13.0	ND	ML	5.5 7.0	1.625 i becomi	prown to red yellow to gray brown, no structure, no odor, moising more cohesive below 9 ft bents at 9.2 ft	st, fines occasionally elast eneath a gravelly layer, b	ic,			_							
- 10 - - -	Ĥ				OL/ OH	2.5 10.0		-COHESIVE ray brown to gray to brown SI and, appears disturbed (may be -ORGANIC DI	LT/ORGANIC SOIL (OI impacted by fill above), t					5	25	70	N	L	L	
- - 15 - -	P U S H	G4 50	13.0 18.0	ND	CL CL	0.0 12.5 -0.5 13.0	structu extrem Gray b	gray brown lean CLAY with some re, grains are subangular to sulely soft to the touch rown becoming more yellow both some some properties of the provided rown becoming more yellow both some some some provided rown becoming more yellow both some some some provided rown and some some some some some some provided rown and some some some some some some some some	and (CL), mps 5 mm, no prounded, no odor, wet, rown with depth lean CL no odor, wet	AY -										
						-5.5 18.0		BOTTOM OF EXPLO	RATION 18.0 FT											
 D	ate	Wa Time	ater Le Elap Time	(hr Bo		th (ft) to Bottom of Hole	o: Water	Sample ID O - Open End Rod T - Thin Wall Tube	Well Diagram ☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐	Overl Rock		den	(ft	•		18.0)			
	8/17		F	Iole colla	apsed)	to 9 ft		U - Undisturbed Sample S - Splitspoon Sample G - Geoprobe	Grout Concrete Bentonite Seal	Samp Bori	oles ng	No).).	G]	F1			
Field	d Tests	:					S - Slow M - Mediu		ity: N - Nonplastic L - Lo rength: N - None L - Low							Verv	Hiq	h		

Н	ALE	Y	н				GEO	PROBE REPOR	Γ		ı	Во	rin	g N	lo.		-	F2		
Clie	ject ent ntracto	DL	J REA	L EST	ATE		AL PAR	, MASSACHUSETTS TNERS			Sh Sta	neet art	o. : No	· 1	of Au	1 gus	t 2 0			
				Casing	San	npler	Barrel	Drilling Equipment	and Procedures		ı	nish iller		8 Zac	Au k N	-		17		
Тур	е			None	(G		Rig Make & Model: 6620	DT Geoprobe		Нδ	&A I	Rep				odso	on		
Insid	de Dia	meter	(in.)		1.0	695		Bit Type: Direct Push Drill Mud: None				eva atun	tion				(est			
Han	nmer V	Veight	(lb)				-	Casing: Hoist/Hammer: Winch	Automotio Hommor		_		ion	Se	ee F	_	_	<u> </u>		
Han		all (in	.)				-	PID Make & Model: Min												
€	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	≘ (≢	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	\	/ISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION	ı	-	avel	_	Sand	t			eld s		
Depth (ft)	pler E er 6 i	nple Rec.	Sample Depth (ft)	Read (ppm	S Sy	tratu Shang /Depi		(Color, GROUP NAME, structure, odor, moisture,			Coarse	Fine	% Coarse	% Medium	ine	% Fines	Dilatancy	Toughness	Plasticity	Strength
l	Sam	Sar & F	S	PID	nsc	S		GEOLOGIC INTER	RPRETATION)		S %	% F	S %	N %	% Fine	% F	Dila	Tou	Plas	Stre
- 0 -	P U	G1 47	0.0	ND	SP	12.1		-BITUMINOUS Corown poorly graded SAND wi			10	10	\10, 10	20,	45	5 -	_	=	_	
-	S H	47	3.0		SM	11.8	Brown (concre	to gray brown silty SAND witete), no structure, no odor, mo	th gravel (SM), mps 1.625	in.	5	10	10	15	30	30				
-	P U	G2	3.0	ND			fragme	ents, 10% ash, cinders, coal -FILL	-											
-	S H	49	8.0																	
- 5 -					SP SM	6.9 5.5		to brown poorly graded SAND re, no odor, moist	(SP), mps < 2 mm, no	,	<u> </u>	<u> </u>	<u> </u>	15	80	_5_	-+	-+	-+	<u> </u>
					JIVI		Brown	to gray brown silty SAND (SM		'										
					CL	4.9 7.5 4.4 8.0		s and ash, trace wood, porcelain frown lean CLAY with sand (C		moist	├-	-			-+	-+	-+	-+	-+	-
	P U	G3 46	8.0 13.0	ND	SM	4.4 8.0	to wet,	trace peat		/										
- 10 -	S H		15.0				odor, r	noist		itu, iio										
'							Note: I	-COHESIVE Poorly bonded and primarily si		5-11.5										
-					CL	0.9 11.5	ft. Gray to	o olive gray lean CLAY with s	and (CL) fines slightly or		├-	Η-	-		- 1	-+	-+	-+	-+	Γ-
-	P	C4	12.0	-		1 1	no odo	r, wet, 5-10% brick particles, disturbed												
ŀ	U S	G4 56	13.0 18.0	ND	CL	-1.1 13.5	Gray b	rown/olive (becoming more ye		ean										
- 15 -	H						CLAY	(CL), mps 1 mm, no odor, we -MARINE DE												
-																				
-																				
-						-5.6 18.0		BOTTOM OF EXPLO	RATION 18.0 FT											
								T												
			Flan	vel Da		th (ft) to	D:	Sample ID O - Open End Rod	Well Diagram Riser Pipe	0.40=	hur		Sum			0.0				
L^D	ate	Time	Time	(hr B	ottom Casing	Bottom	Water	T - Thin Wall Tube	Screen Filter Sand	Overl Rock			•		J	8.0	,			
8/8	8/17	1030	0.			~ 18	9.8	U - Undisturbed Sample S - Splitspoon Sample	ির্ভ Cuttings Grout	Sam			•	G	4					
								G - Geoprobe	Concrete Bentonite Seal	Bori	ng	No	э.			I	72			
Field	d Tests	: :		Dilatan	icy: R	Rapid S	S - Slow	│ N - None Plastic m H - High Dry Str	ity: N - Nonplastic L - Lo rength: N - None L - Low	w M-N	/ledi	um	H -	High) \/ - \	/en/	Hic	h		
†No	te: Ma			size is	detern	nined by	direct ob	m H - High Dry Str servation within the limitation sual-manual methods of th	s of sampler size.							v Ci y	ı ııy			
		140	, <u>J</u>	on idel	.uncal	vas	ou on vi	Jaar-manaan methous of th	io occo as practiceu i	<u>y maie</u>	<u>, </u>	AIL	<u> 161</u>	<u>ı, 111</u>	···					

Н		PRIC	н				GEO	PROBE REPOR	т		ı	Во	rin	g N	No.			F3		
Clie	ject ent ntracto	DL	J REA	L EST	ATE		AL PAR	, MASSACHUSETTS TNERS			Sh Sta	eet art	: No). 1 8		1 gus	02 st 20 st 20			
				Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures			nish iller			k N	-		/1 /		
Тур	е			None	(G		Rig Make & Model: 6620) DT Geoprobe				Rep				ods	on_		
Insid	de Dia	meter	(in.)		1.0	695		Bit Type: Direct Push Drill Mud: None				eva atun	tion n	1	12 N.		D 8	8		
l	nmer I	Weight all (in	` ′				-	Casing: Hoist/Hammer: Winch PID Make & Model: Mir			Lo	cat			ee I	Plan	ı			
Œ	Blows in.	No.)	æ €	dings)	loqui	E 26 E	١ ,	VISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION		-	avel	-	San				ield g		
Depth (ft)	Sampler E per 6 i	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		(Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTER	optional descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	P U	G1 31	0.0	ND	SP	12.2		-BITUMINOUS (5	5	5	15	\ <u>80</u> 50	5 /				
-	S H	31	3.0		SM	0.3 12.0 0.5	Brown and Co	v poorly graded (fine) SAND (3 silty SAND (SM) interbedded OAL with 40% silty SAND, oc orick and concrete fragments	with layers of CINDERS, A					15	50	20				
	P U	G2 45	3.0 8.0	ND	SM	9.5 3.0 9.0	Note:	Dark gray to black silty (fine) sic-looking with slight rusty bro	SAND from 3-3.5 ft (slightly	у								\vdash		
- 5 -	S H		0.0		SM	3.5	1,	-FILL r to above SM from 0.5-3 ft												
-							Sillila	I to above SM Irom 0.3-3 it												
-					ML	5.5 7.0	Vello	w to tan sandy SILT with grave	el (MI) mps 1 5 in no		10	5	<u> </u>	5	15	65	R	\sqcup	L -	<u> </u>
-	P	G3	8.0	ND	IVIL	7.0		ire, feels very dense, no odor,	moist		10				13	05	1			
-	U S	46	13.0	112		3.5 9.0	Note:	-COHESIVE Wet at 10 ft, becoming more co		 nal	<u> </u>	5	5	10	15	65	N	L	L	⊢ -
- 10 -	Н							pockets, occasional fragments												
-																				
-						-0.3														
-					CL	12.8 -0.5 13.0		prown (becoming more yellow) no visible structure, no odor, v		AY /						100	N	L	L	
						13.0		-MARINE DE BOTTOM OF EXPLO												
			Elap	evel Dat		th (ft) to	 o:	Sample ID O - Open End Rod	Well Diagram Riser Pipe	Over	h		Sum off			12.4				
	ate	Time	Time	(hr \ B	ottom Casing	Bottom of Hole	Water	T - Thin Wall Tube	Screen	Overl Rock			•	•		13.(-	j			
8/	8/17		0.	2		~13	9.9	U - Undisturbed Sample S - Splitspoon Sample	0 : 61	Samp	oles	3		G	13					
								G - Geoprobe		Bori	ng	No	Э.]	F3			
Field	d Tests): :	1	Dilatan	icy: R	- Rapid L - Low	S - Slow M - Mediu		ity: N - Nonplastic L - Low rength: N - None L - Low I							Ver	Hic	 ih		
†No	te: Ma	ximum No	particle ote: S	size is	detern	nined by	direct ob	oservation within the limitation is ual-manual methods of the	ns of sampler size.)		_		

H&A-GEOPROBE-09 W/ PID HA-LIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:\\130771 - 1 BOYNTON YARDS\GINT\\13027-1-002-GEOPROBES.GPJ 5 Nov 17

Н	ALE	PRIC	Н			(GEO	PROBE REPOR	Т		E	Воі	rin	g N	lo.		(G1		
Clie	ject ent ntracto	DL	J REA	L EST	ATE		AL PAR	, MASSACHUSETTS TNERS			Sh Sta	eet irt		· 1	of Au		t 2 0			
				Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures		Fin Dri			o Zac		-		11/		
Тур	е			None	(G		Rig Make & Model: 6620) DT Geoprobe		Н&	ΑF	⋜ер		M.	. Do	odso	on		
Insid	de Dia	meter	(in.)		1.0	595		Bit Type: Direct Push Drill Mud: None			l .		tion			.3 AVI				
Han	nmer V	Neight	(lb)				-	Casing:			Da ⁻		ion	Se		lan		0		
Han	nmer F	Fall (in.	.)				-	Hoist/Hammer: Winch PID Make & Model: Mir												
£	ows	9 C.	⊕ (ngs	loqu	€	\	/ISUAL-MANUAL IDENTIFICA		ı	Gra	vel	-	Sanc	i		F	_	Tes	st
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		(Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTER	optional descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	P	G1	0.0	ND	SP	11.0		-BITUMINOUS (10	10	5	20	50	5				F
-	U S H	28	3.0		ML/ SM	0.3 10.5 0.8	\no stru	brown poorly graded SAND cture, no odor, moist		in., / 	$\lceil \rceil$		~ ~							
-								rown to brown silty SAND/ sadded with ASH and CINDERS												
	P U	G2 56	3.0 8.0	ND			blackis	h sand layers	,											
	S H		0.0					-FILI	<i>.</i> -											
- 5 - - -					CL	5.8 5.5	1.4 in.	o gray to gray brown sandy lee, disturbed, no odor, wet at ap imately 8.0 ft, trace wood deb re, very hard to touch	proximately 6.0 ft but morris, pockets of sand, incom	ist to		_			_	_	_			
	P U	G3 48	8.0 13.0	ND	OL/	2.8 8.5	Gray to	-COHESIVI o olive gray to dark gray ORG												_
- 10 -	S H		13.0		OH/ CL			H/CL), mps 0.4 in., appears d s, black wood fragments, no d												
10						0.3 11.0	P	-ORGANIC D												
-					CL	11.0	Olive to	o light brown lean CLAY (CL), no visible structure, no	odor,										
-						-1.7 13.0		-MARINE DE BOTTOM OF EXPLO												
D	ate	Wa Time	ater Le Elap Time	(hr B		th (ft) to Bottom of Hole	o: Water	Sample ID O - Open End Rod T - Thin Wall Tube	Well Diagram ☐☐ Riser Pipe ☐☐ Screen ☐☐ Screen ☐☐ Filter Sand	Over Rock		len	` ')		3.0				
8/8	8/17	0845	0.		Judiniy	~ 13	7.7	U - Undisturbed Sample S - Splitspoon Sample	ির্ভি Cuttings Grout	Sam			,,,,	G:	3	_				
								G - Geoprobe	Concrete Bentonite Seal	Bori	ng	No	ο.			(31			
Field	d Tests	s: 					S - Slow M - Mediu		city: N - Nonplastic L - Lo rength: N - None L - Low							√erv	Hia	<u>h</u>		
†No	te: Ma	ximum _I No	oarticle ote: S	size is	detern	nined by	direct ob	servation within the limitation sual-manual methods of the	ns of sampler size.											

HA	LEY LDRICH			TEST PIT LOG		T	est	: Pi	t N	lo.		A5-	·TI)
Proje			ON YARI			File	e No) .		130′	771-	002		
Loca Clien				ASSACHUSETTS FE CAPITAL PARTNERS		Н&	AR	lep		M.	Dod	son		
_	-			ATIONS, INC.		Dat	te		1	4 A	ıg 2	017		
	oment Used		bcat E45			We	ath	۵r	S	unny	. 70	s		
Groui	nd El.: 9.5 ((est.)		Location: See Plan	Groundwater depths/entry								nm	
	atum: NAV	` ′		See Train	approximately 6.0 ft		•		•	50	pus	U 111	,,,,,	
£		Stratum		VISUAL-MANUAL IDENTIFICAT	TION AND DESCRIPTION		Gra			and		Fie		ests
Depth (Sample ID	Change Elev./ Depth (ft)	USCS Symbol	(color, natural grain size and artificial compo particle size, manual test propertie other descriptions an GEOLOGIC INTER	s, structure, odors, moisture, d observations	num	% Coarse	% Fine	% Coarse	% Medium % Fine	% Fines	Dilatancy	Toughness	Plasticity
0		9.3	CM	-BITUMINOUS C	CONCRETE-	NID				5 25				
		8.7	SM	Gray brown silty sand with gravel (SM										
		0.8	SM	Dark gray brown silty SAND with gravin., no structure, no odor, moist, 5% b cinders	vel (SM), no oversized, mps 10)	10	10	15 2	20 25	20			
2 -		7.7 1.8	GW-GM	Light gray well graded GRAVEL with -FILL			20	30	15 1	0 15	10		-+	-+
	0.0 - 5.0	7.0 2.5	<u>-</u> -	Dark gray silty SAND with gravel (SM	PID =		10	15	15 1	0 25	25		-4	-+
4 -		4.5		trace plastic (plastic bags and poly), tra	ee wood, glass, steel scrap									
Ì		5.0		Note: Stratum change varies between 4	$.\overline{5}$ and $\overline{5}.\overline{0}$ ft. PID =	ND			-†	+	†-		-+	-+
6 -	5.0 - 6.5		SM/SC	Olive gray to olive brown silty/clayey soversized, no structure, no odor, moist approximately 6.0 ft, 5% cobbles	SAND with gravel (SM/SC), 5									
		3.0 6.5		-COHESIVE Note: Stratum change varies between 6		_			+					+
8 -	6.5 - 8.5		OL/OH	Olive gray to gray to black ORGANIC wet, 5-10% organic fibers, top foot app placement above), layered below appro-ORGANIC DI	PID = SOIL (OL/OH), organic odor, oears disturbed (possibly from ximately 6.5-7.0 ft EPOSITS-	,					100			
		1.0		Note: PEAT/ORGANIC SOIL from 7. ORGANIC SOIL from 8.0-8.5 ft.					\perp	_				\dashv
		8.5		BOTTOM OF EXCA	VATION 8.5 FT									
														$\underline{\perp}$
bstru	ctions: None	e	Rem	narks:	Dilatancy Toughness Plasticity N - N Dry Strength N - None	R - L - L lonpla	astic	id M - L - I	Med _ow	dium M - I	H - Jediu	m F	ł - Hi	_

Boulders Standing Water in Completed Pit Test Pit Dimensions (ft) Diameter (in.) Number Approx. Vol. (cu.ft) Pit Length x Width (ft) 9×3 at depth Dry 12 to 24 3 3 8.5 measured after hours elapsed Pit Depth (ft) over 24 NOTE: Soil identification based on visual-manual methods of the USCS system as practiced by Haley & Aldrich, Inc.

HA TESTPIT-07-1

HALEY	СН	TEST PIT LOG	i	Test Pit No. B5-TP
Project	BOYNTON YA	RDS		File No. 130771-002
Location	SOMERVILLE,	MASSACHUSETTS		H&A Rep M. Dodson
Client	DLJ REAL EST	ATE CAPITAL PARTNERS		Tida Nep
Contractor	EARTH EXPLO	PRATIONS, INC.		Date 14 Aug 2017
Equipment U	lsed Bobcat E	45		Weather Sunny, 80s
Ground El.: 9. El. Datum: N	.9 (est.) JAVD 88	Location: See Plan	Groundwater depths/entry approximately 6.5 ft	rates (in./min.): Seepage below

	El. Da	atum: NAV	D 88				appro	oximately 6.5 ft											
	ft)		Stratum			SUAL-MANUAL IDENTIFICA	ATION AN	ND DESCRIPTION		Gra			Sanc	ł		Fie	ld T	ests	<u>s</u>
	Depth (ft)	Sample ID	Change Elev./ Depth (ft)	USC Symb	(color, natural partic	grain size and artificial comp cle size, manual test properti other descriptions a GEOLOGIC INTEI	es, struct ind obser	ture, odors, moisture, vations	aximum	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strenath
	- 0 -			SM	Light gray be oversized, m	rown to dark gray brown ps 3.0 in., no structure, r	silty SA no odor,	moist		15	25	15	15	15	15				
			9.2 0.7	SM	no structure,	silty SAND with gravel (no odor, moist, 5% brick coal, porcelain, wood, as	k/concre	o oversized, mps 11.0 ete/mortar fragments	= ND in., trace	10	10	10	20	30	20				
-	- 2 -	0.0 - 4.5						PID	= ND										
	- 4 -					approximately 3.0 ft mat linkers, ash (approximate -FIL)	ly 20%)		rcent										
	•		5.4 4.5		Light brown	clayey SAND (SC), occa	oi on all v	v condy loon CLAV			5	L	10	25	60		_	- -	Ļ
			4.5	SC	no structure,	no odor, moist, occasion eces/fragments of light gr	al brick	particles, cinders, CLAY	= ND		5		10	25	60	IN		L	
6 Nov 17		4.5.50	3.9			-COHESIV	E FILL	-											
	- 6 -	4.5 - 7.0	6.0	GW		o brown to dark gray well structure, no odor, mois			6.5										<u> </u>
002-TP			2.9			-FIL													
:\d30771 - 1 BOYNTON YARDS\GINT\d30771-002-TP.GPJ			7.0	OL/O	less sandy wi	gray brown sandy ORGA ith depth and mottled olivers at 7.5-8.5 ft		pelow approximately	8.0 ft,					35	65	N	L	L	
ARDS/G	- 8 -	7.0 - 9.0						PID	= ND										
OYNTON Y		7.0 7.0	0.9			-ORGANIC D	DEPOSI'	TS-						5	96	N	М	М	
130771 - 1 B			9.0			BOTTOM OF EXPL	ORATIO	ON 9.0 FT											
HA-TP07-1.GDT G:\																			
	Obstru	uctions: None	<u> </u>	R	emarks:		I		Fi	eld T	ests							_	<u>_</u>
HA-LIB09-BOS.GLB								Dilatancy Toughness Plasticity Nory Strength N - No	R L - I - Nonp	- Rap Low lastic	oid M ·	S - - Me Low	ediur v M	n - M	ediu	High m F	l - Hi	_	h
		Standing W	later in 0	Comple	ted Pit		oulders		<u> </u>		est I				Ť				_
HA TESTPIT-07-1		depth easured after	8.5 0.5		ft hours elapsed	12 to 24 - over 24 -		Approx. Vol. (cu.ft) = - = -	Pit	Len Dep	th (ft)		`	t) 9 9.0) x 3	3		
₹		NO	TE: Soil	identific	ation based on vis	sual-manual methods of th	e USCS	system as practiced	by Hale	y & <i>F</i>	Aldri	ch,	Inc.					_	

Obstructions: None		Remarks:					Field Tests
					Dilatancy		R - Rapid S - Slow N - None
					Toughnes	S	L - Low M - Medium H - High
					Plasticity	N	I - Nonplastic L - Low M - Medium H - High
					Dry Streng	gth N - No	ne L - Low M - Medium H - High V - Very High
Standing Wa	ter in Cor	npleted Pit		Boulder			Test Pit Dimensions (ft)
at depth	0.5		Diameter (in.)	<u>Number</u>	Approx. Vo	ol. (cu.ft)	Pit Length x Width (ft) 9 x 3
	8.5	π	12 to 24	_	= _		Fit Length X Width (it) 9 X 3
measured after	0.5	hours elapsed	over 24	_	= -		Pit Depth (ft) 9.0

HALEY TEST PIT LOG										t P	it I	No	D6-TP									
İ	Project BOYNTON YARDS											File	le No. 130771-002									
	Loca		SOMERV	/ILLE,	MASS	SACHUSE	ΓTS					H&A Rep M. Dodson										
	Clier	nt	DLJ REA	L EST.	ATE (CAPITAL F	PARTNERS															
	Cont	tractor	EARTH 1	EXPLO	RATI	IONS, INC.						Dat	te		14 Aug 2017							
	Equipment Used Bobcat E45 Ground El.: 10.1 (est.) Location: See Plan Groundwater depths/entry										We	ath	er	Sun and clouds,					s, 8	30s		
EI. Datum: NAVD 88			Loc	Groundwater depths/entry corner at approximately 6.0							s (in	./m	in.)	:]								
İ	£		Stratum			VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION					-	Gravel			Sand	d		Fie		ests	s	
	Depth	Sample ID	Change Elev./ Depth (ft)	USC Symb					, struct I obser	ture, odors, mois vations		num	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Ssauybno	Plasticity	Strength
	- 0 -			SM		Gray brown soncrete frage	ilty SAND with ments	gravel (SN	M), ov	versized, 10%	brick and PID =		10	25	20	15	15					
	- 1 -		9.2 0.9		- Si	imilar to abo lastic, glass,	ove except brown ash, cinders, wo	to gray b	rown scrap	and 15 7 porce, asphalt piece	elain,											-
	- 2 -																					
		0.0 - 5.0									PID =	ND										
i	- 3 -							-FILL-														
21	- 4 -																					
J 6 Nov 17	- 5 -				N	Note: Noticeably more damp/wet below 4.5 ft, sandier Note: On NE corner of pit, sand and shells extend up to approximate																
G:\130771 - 1 BOYNTON YARDS\GINT\130771-002-TP.GPJ		50.65	4.6 5.5	SM	D (e	.5 ft. Dark gray silt especially at	, moist to											<u> </u>				
S\GINT\1307	- 6 -	5.0 - 6.5	3.6		W	et, approxin	nately 25% fine of	cinders, cl -FILL-		s, ash intermix	ed PID =	ND										
N YARD			6:5 3:3	CL		Note: Bottom CL)	of final bucket:	olive gray	brow	n mottled lean	CLAY											
YNTO			6.8		N	lote: Termin	-POSSIBLE ated test pit due				ıst corner	of										
1 - 1 BC						it at 5.5 ft.	1	1		•												
:\13077						BOTTOM OF EXCAVATION 6.8 FT																
-07-1.G																						
HA-T	Ohetri	uctions: Ru	hble	 	emark	outo.				Fie	eld T	este	<u></u>						<u></u>	<u>_</u>		
JS.GLB	Jusuit	actions. Kill	oole	"	orriar K	.			ŀ	Dilatancy			Rap			Slo	w	N -	None)		
HA-LIB09-BOS.GLB HA-TP07-1.GDT								-		Toughness Plasticity Dry Strength		Nonpla		L-	Lov	v M	1 - M	ediu	ım F	1 - H	_	h
-07-1	Standing Water in Completed Pit Diameter (in.) Number Approx.								Approx. Vol. (cu.ft) Pit Length x Width (ft) 8 x 3													
HA TESTPIT-07-1	at depth 5.5 ft 12 to 24 2 = 3 over 24 - = -										Pit I		_		vidt	•	t) { 6.8		•			
HAT				identific		•	ual-manual metho	ods of the	USCS	system as pra	cticed by					Inc						

	HA	LEYIC	н		TES	ST PIT LOG			Т	es	t P	it N	ο.		E4-	·TI)	
Ī	Proje	ect	BOYNTO	ON YAI	RDS	s						o. 130771-002						
	Loca	ition	SOMERV	ILLE,	MASSACHUSE	TTS				kA F	Rep		M.	Dod	lson			
	Clier	-	DLJ REA	L EST	ATE CAPITAL I	PARTNERS					ч		4 4		017			
		tractor			RATIONS, INC				Da	ite		14	4 Al	ıg 2	017			
	Equi	pment Us	ed Bo	bcat E4	.5				We	ath	er	Su	ın aı	s, 8	s, 80s			
		ind El.: 11. atum: _{NA}	, ,		Location : Se	e Plan	Grou	ndwater depths/entry	/ rate	s (in	ı./mi	in.):	No	ne				
	Œ		Stratum			SUAL-MANUAL IDENTIFI	CATION A	ND DESCRIPTION		Gra		Sa	nd - I		Fie		ests	
	Depth (ft)	Sample ID	Change Elev./ Depth (ft)	USC: Symb		grain size and artificial co cle size, manual test prope other description GEOLOGIC INT	erties, struc s and obse	ervations	imum	% Coarse	% Fine	% Coarse % Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
	- 0 -		10.6	GW-G	oversized, mp	ps 11 in. (concrete pied		and sand (GW-GM), no ructure, no odor, moist										
			0.5	SM	Brown to gray		k and con	$\frac{\text{PID}}{\text{I}(\overline{SM}), \text{ oversized, no}} = \frac{\text{PID}}{\text{I}(\overline{SM}), \text{ oversized, no}}$ icrete fragments and pie	eces,									
-	- 2 -	0.0 - 5.0				-F)	ILL-	PID =	· ND									
=	- 4 -		6.1															
6 Nov 17			5.0	CL	8 in., disturbe		coming m	nd (CL), no oversized, nore gray with depth, sl ft PID =	ight									
	- 6 -					roximately 6.0 ft depth l pipe running East to		tered an approximately ards a light pole in the	3-in.									
700-177		5.0 - 9.0				-COHES	IVE FILL	<u>.</u> -										
GALLON LANDON LA	- 8 -				gray with occ	approximately 7.5 ft, 1 casional darker gray zo sional cinders, very dis	nes, varia		ight									
TNIONTA						of 6 in. may be natural oration in-situ only.	organic so	oil but observation made $PID = $										
- I BC			$-\frac{2.1}{9.0}$			BOTTOM OF EX	CAVATIO	ON 9.0 FT									\vdash	
	Ohetri	uctions: Piŗ	ne at 6 0 f	. R	emarks:			Ι	Fi	eld T	ests						<u> </u>	
na iestrii-0/-i na-tibus-bus.gcb na-iru/-i.gdi	Susur	aouona. Pi	oe at 0.0 ft		oniai no.			Dry Strength N - None	R - L - l Nonpl	- Rap Low astic	oid M	S - SI - Medi Low	ium M - N	H - Mediu	High ım F	1 - H	-	
ESTR11-07-1		Standing depth easured afte	Dry	Comple	ft hours elapsed	1	-	<u>S</u> Approx. Vol. (cu.ft) =			gth	Pit Di x Wid ft)			10 x			
₹		N	IOTE: Soil	identific	ation based on vis		the USCS	S system as practiced b	y Hale	y & /	۱dri	ch, In	ıc.					

APPENDIX B

Haley & Aldrich Soil Precharacterization Group Classification System

APPENDIX B
HALEY & ALDRICH SOIL PRECHARACTERIZATION
GROUP CLASSIFICATION SYSTEM
BOYNTON YARDS
SOMERVILLE, MASSACHUSETTS
FILE NO. 130771-002

Haley & Aldrich has developed the following Soil Precharacterization Group Classification System to describe soil quality with regards to both Massachusetts Contingency Plan (MCP) requirements and disposal facility requirements (#COMM-97-001 and specific facility requirements):

GROUP I:

Note: Certain Group I soils (soils with levels of contaminants less than RCS-1) may not meet facility specific criteria (based on material characteristics or levels of contaminants) at most locations that accept material below RCS-1. Accordingly, these materials may require reuse at an in-state unlined landfill.

- Group I-1: Naturally deposited inorganic soils that contain no detectable levels of oil, waste
 oil, or hazardous materials other than background levels of naturally occurring metals or other
 natural substances.
- Group I-2: Naturally deposited soils that contain low levels of oil, waste oil, or hazardous materials below applicable RCS-1 release notification thresholds specified in CMR 40.0300 and/or background levels of naturally occurring metals or other natural substances and that are not otherwise a hazardous waste, as specified in DEP Policy.
- <u>Group I-3</u>: Urban Fill soils which contain oil, waste oil or hazardous materials at concentrations less than a release notification threshold equal to RCS-1 specified in CMR 40.0361, and that are not otherwise a hazardous waste, as specified in DEP Policy.

GROUP II:

Soils that contain oil, waste oil, or hazardous materials at concentrations greater than or equal to applicable RCS-1 release notification thresholds specified in CMR 40.0300, and that are not otherwise a hazardous waste as specified in MassDEP Policy. Group II soils are considered Remediation Waste and require management under the MCP unless specifically indicated otherwise. Unless otherwise specified, transport of Group II soils from the site to appropriate off-site facilities shall be tracked using Bureau of Waste Site Cleanup Bills-of-Lading (BOL) prepared by the Owner's LSP. Group II soils require off-site reuse, recycling, treatment, or disposal at MassDEP-approved facilities based on the results of the Precharacterization Testing Program and criteria outlining the following Groups:

- <u>Group II-1</u>: Material which meets the COMM-97-001 criteria for disposal at in-state unlined landfills to be reused as daily cover, intermediate cover, and pre-cap contouring material.
- Group II-2: Material which meets the COMM-97-001 criteria for disposal at in-state lined facilities to be reused as daily cover, intermediate cover, and pre-cap contouring material.
- Group II-3: Material which meets the acceptance criteria for in-state or regional asphalt batching recycling facilities.

12/22/2017 Page 1 of 2

APPENDIX B
HALEY & ALDRICH SOIL PRECHARACTERIZATION
GROUP CLASSIFICATION SYSTEM
BOYNTON YARDS
SOMERVILLE, MASSACHUSETTS
FILE NO. 130771-002

- Group II-4: Material which meets regional thermal treatment facilities. These materials may also be acceptable for reuse or disposal at RCRA Subtitle D facilities.
- <u>Group II-5</u>: RCRA non-hazardous waste material which contains concentrations of contaminants that exceed acceptance criteria of regional recycling or thermal treatment facilities that require disposal at a RCRA Subtitle D landfill facility.

GROUP III - Hazardous Waste:

Soils that meet specific "characteristic" or "listed" hazardous waste criteria as defined in 310 CMR 30.000, the "Massachusetts Hazardous Waste Regulations."

- Group III-1: Soils determined to contain "listed" or "characteristic" hazardous waste constituents that cannot be readily treated on-site. This material must be transported to an out-of-state approved RCRA Subtitle C hazardous waste disposal or treatment facility that has been approved by the Owner in accordance with the procedures outlined in Section 1.7. These soils must be transported under Uniform Hazardous Waste Manifest. Land Disposal Restrictions (LDRs) may apply to the soil.
- Group III-2: Soils determined to exhibit a "characteristic" of hazardous waste such as ignitability, corrosivity, reactivity or toxicity (leachability) or soils that contain hazardous constituents from a listed hazardous waste that can be successfully treated on-site and no longer exhibits a characteristic of hazardous waste or has been determined (by the applicability of the Contained-in Determination) that the material is no longer a hazardous waste. The material will be reclassified depending on other contaminants and disposed of at a Group II-2, II-3, II-4, or II-5 facility that has been approved by the Owner. Decharacterized hazardous waste may not be acceptable for reuse at select Group II-3 facilities or for reuse as daily cover.

G:\130771 - 1 Boynton Yards\Precharacterization\2017-11 Precharacterization Report\Appendix B - H&A Soil Classification\2017-0927-HAI-Group Classification Summary.doc

12/22/2017 Page 2 of 2

APPENDIX C

Laboratory Data Reports

APPENDIX D

Previous Reports